Fully Aligned Via Integration for Extendibility of Interconnects to Beyond the 7 nm Node

被引:0
|
作者
Briggs, Benjamin D. [1 ]
Peethala, C. B. [1 ]
Rath, D. L. [2 ]
Lee, J. [1 ]
Nguyen, S. [1 ]
LiCausi, N. V. [4 ]
McLaughlin, P. S. [2 ]
You, H. [4 ]
Sil, D. [1 ]
Lanzillo, N. A. [1 ]
Huang, H. [1 ]
Patlolla, R. [1 ]
Haigh, T., Jr. [1 ]
Xu, Y. [1 ]
Park, C. [4 ]
Kerber, P. [2 ]
Shobha, H. K. [1 ]
Kim, Y. [5 ]
Demarest, J. [1 ]
Li, J. [1 ]
Lian, G. [3 ]
Ali, M. [3 ]
t Le, C. [3 ]
Ryan, E. T. [4 ]
Clevenger, L. A. [1 ]
Canaperi, D. F. [1 ]
Standaert, T. E. [1 ]
Bonilla, G. [1 ]
Huang, E. [1 ]
机构
[1] IBM Albany Nanotech, 257 Fuller Rd, Albany, NY 12203 USA
[2] IBM TJ Watson Res Ctr, 257 Fuller Rd, Albany, NY 12203 USA
[3] IBM Syst, 257 Fuller Rd, Albany, NY 12203 USA
[4] GLOBALFOUNDRIES Inc, 257 Fuller Rd, Albany, NY 12203 USA
[5] Samsung Elect, 257 Fuller Rd, Albany, NY 12203 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fully aligned via (FAV) integration scheme is introduced and demonstrated at 36 nm metal pitch, with extendibility to beyond the 7 nm node. Selective chemistries were developed to recess Cu and W wires and their associated barrier liner materials, so as to create local topography with no adverse effects on these wiring levels or their dielectrics. Dielectric cap layers were optimized for excellent via RIE selectivity, to act as via guiding structures during subsequent level pattern definition. This combination mitigates via overlay and critical dimension (CD) errors. FAV integration can enable line/via area scaling for 70% lower line resistances and 30% larger via contact areas at the same node. Concurrently, FAV improves TDDB reliability through increased minimum insulator spacing, and EM reliability by maximizing via/wire contact area.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Fully Self-Aligned Via Integration for Interconnect Scaling Beyond 3nm Node
    Chen, H. P.
    Wu, Y. H.
    Huang, H. Y.
    Tsai, C. H.
    Lee, S. K.
    Lee, C. C.
    Wei, T. H.
    Yao, H. C.
    Wang, Y. C.
    Liao, C. Y.
    Chang, H. K.
    Lu, C. W.
    Shue, Winston S.
    Cao, Min
    2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
  • [2] Metal Wet Recess Challenges and Solutions for beyond 7nm Fully Aligned Via Integration
    Peethala, B.
    Sil, D.
    Briggs, B.
    Rath, D.
    Lanzillo, N.
    Matam, K.
    Shobha, H.
    Choi, K.
    Spooner, T.
    Canaperi, D.
    Haran, B.
    Packiam, M.
    Janes, D.
    Casey, J.
    Chang, L.
    Ryan, K.
    IITC2021: 2021 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE (IITC), 2021,
  • [3] Resistivity of copper interconnects beyond the 7 nm node
    Pyzyna, A.
    Bruce, R.
    Lofaro, M.
    Tsai, H.
    Witt, C.
    Gignac, L.
    Brink, M.
    Guillorn, M.
    Fritz, G.
    Miyazoe, H.
    Klaus, D.
    Joseph, E.
    Rodbell, K. P.
    Lavoie, C.
    Park, D. -G.
    2015 SYMPOSIUM ON VLSI TECHNOLOGY (VLSI TECHNOLOGY), 2015,
  • [4] Methods to lower the resistivity of ruthenium interconnects at 7 nm node and beyond
    Zhang, Xunyuan
    Huang, Huai
    Patlolla, Raghuveer
    Mont, Frank W.
    Lin, Xuan
    Raymond, Mark
    Labelle, Cathy
    Ryan, E. Todd
    Canaperi, Donald
    Standaert, Theodore E.
    Spooner, Terry
    Bonilla, Griselda
    Edelstein, Daniel
    2017 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE (IITC), 2017,
  • [5] Composite Interconnects for High-Performance Computing Beyond the 7nm Node
    Bhosale, P.
    Parikh, S.
    Lanzillo, N.
    Tao, R.
    Nogami, T.
    Gage, M.
    Shaviv, R.
    Huang, H.
    Simon, A.
    Stolfi, M.
    Reidy, S.
    Lee, J.
    Loubet, N.
    Haran, B.
    2020 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2020,
  • [6] Semidamascene Interconnects for 2nm node and Beyond
    Murdoch, Gayle
    Tokei, Zsolt
    Paolillo, Sara
    Pedreira, Olalla Varela
    Vanstreels, Kris
    Wilson, Christopher J.
    2020 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE (IITC), 2020, : 4 - 6
  • [7] Process Challenges in Fully Aligned Via Integration for sub 32 nm Pitch BEOL
    Briggs, Benjamin D.
    Peethala, C. B.
    Rath, D. L.
    Lee, J.
    Nguyen, S.
    LiCausi, N. V.
    McLaughlin, P. S.
    You, H.
    Sil, D.
    Lanzillo, N. A.
    Huang, H.
    Patlolla, R.
    Haigh, T. J. R.
    Xu, Y.
    Park, C.
    Kerber, P.
    Shobha, H. K.
    Kim, Y.
    Demarest, J.
    Li, J.
    Lian, G.
    Ali, M.
    Le, C. T.
    Ryan, E. T.
    Clevenger, L. A.
    Canaperi, D. F.
    Standaert, T. E.
    Bonilla, G.
    Huang, E.
    2018 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE (IITC), 2018, : 148 - 148
  • [8] PMOS Contact Resistance Solution Compatible to CMOS Integration for 7 nm Node And Beyond
    Ni, C. -N.
    Huang, Y. -C.
    Jun, S.
    Sun, S.
    Vyas, A.
    Khaja, F.
    Rao, K. V.
    Sharma, S.
    Breil, N.
    Jin, M.
    Lazik, C.
    Mayur, A.
    Gelatos, J.
    Chung, H.
    Hung, R.
    Chudzik, M.
    Yoshida, N.
    Kim, N.
    2016 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATION (VLSI-TSA), 2016,
  • [9] Selective deposition of AlOx for Fully Aligned Via in nano Cu interconnects
    Nguyen, Son Van
    Shobha, H.
    Peethala, C. B.
    Haigh, T.
    Huang, H.
    Li, J.
    Demarest, J.
    Haran, B.
    Hausmann, Dennis
    Lemaire, P.
    Sharma, K.
    Ramani, P.
    Mahorowala, A.
    IITC2021: 2021 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE (IITC), 2021,
  • [10] Replacing Copper Interconnects with Graphene at a 7-nm Node
    Wang, Ning C.
    Sinha, Saurabh
    Cline, Brian
    English, Chris D.
    Yeric, Greg
    Pop, Eric
    2017 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE (IITC), 2017,