Wightman function and vacuum densities in de Sitter spacetime with toroidally compactified dimensions

被引:23
作者
Bellucci, S. [1 ]
Saharian, A. A. [2 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
[2] Yerevan State Univ, Dept Phys, Yerevan 0025, Armenia
关键词
D O I
10.1103/PhysRevD.77.124010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the Wightman function, the vacuum expectation values of the field squared, and the energy-momentum tensor for a scalar field with a general curvature coupling parameter in (D+1)-dimensional de Sitter (dS) spacetime with an arbitrary number of compactified spatial dimensions. Both cases of periodicity and antiperiodicity conditions along the compactified dimensions are considered. Recurrence formulas are derived which express the vacuum expectation values for the dS spacetime of topology R-p x(S-1)(q) in the form of the sum of the vacuum expectation values in the topology Rp+1 x (S-1)(q-1) and the part induced by the compactness of the (p+1)th spatial dimension. The behavior of the topological parts is investigated in various asymptotic regions of the parameters. In the early stages of the cosmological evolution, the topological parts dominate the contribution in the expectation values due to the uncompactified dS part. In this limit the behavior of the topological parts does not depend on the curvature coupling parameter and coincides with that for a conformally coupled massless field. At late stages of the cosmological expansion, the expectation values are dominated by the part corresponding to uncompactified dS spacetime. The vanishing of the topological parts is monotonic or oscillatory in dependence of the mass and the curvature coupling parameter of the field.
引用
收藏
页数:11
相关论文
共 48 条
[1]  
Abramowitz M., 1964, Handbook of Mathematical Functions
[2]   PHASE-TRANSITIONS IN DE-SITTER SPACE [J].
ALLEN, B .
NUCLEAR PHYSICS B, 1983, 226 (01) :228-252
[3]  
Birrell ND., 1982, Cambridge Monographs on Mathematical Physics, DOI 10.1017/CBO9780511622632
[4]   New developments in the Casimir effect [J].
Bordag, M ;
Mohideen, U ;
Mostepanenko, VM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 353 (1-3) :1-205
[5]   Conformal vacua and entropy in de Sitter space [J].
Bousso, R ;
Maloney, A ;
Strominger, A .
PHYSICAL REVIEW D, 2002, 65 (10)
[6]   Two-point functions and quantum fields in de Sitter universe [J].
Bros, J ;
Moschella, U .
REVIEWS IN MATHEMATICAL PHYSICS, 1996, 8 (03) :327-391
[7]   QUANTUM FIELD-THEORY IN DE SITTER SPACE - RENORMALIZATION BY POINT-SPLITTING [J].
BUNCH, TS ;
DAVIES, PCW .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 360 (1700) :117-134
[8]   Quantum fields and extended objects in space-times with constant curvature spatial section [J].
Bytsenko, AA ;
Cognola, G ;
Vanzo, L ;
Zerbini, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 266 (1-2) :1-126
[9]   GENERAL-RELATIVISTIC QUANTUM FIELD-THEORY - EXACTLY SOLUBLE MODEL [J].
CANDELAS, P ;
RAINE, DJ .
PHYSICAL REVIEW D, 1975, 12 (04) :965-974
[10]   Constraining the topology of the Universe [J].
Cornish, NJ ;
Spergel, DN ;
Starkman, GD ;
Komatsu, E .
PHYSICAL REVIEW LETTERS, 2004, 92 (20) :201302-1