Anomalous diffusion in aperiodic environments

被引:51
|
作者
Iglói, F
Turban, L
Rieger, H
机构
[1] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[2] Univ Nancy 1, Phys Mat Lab, F-54506 Vandoeuvre Les Nancy, France
[3] Univ Nancy 1, Phys Mat Lab, F-54506 Vandoeuvre Les Nancy, France
[4] Forschungszentrum Julich, Hochstleistungsrechenzentrum, D-52425 Julich, Germany
[5] Univ Szeged, Inst Theoret Phys, H-6720 Szeged, Hungary
关键词
D O I
10.1103/PhysRevE.59.1465
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the Brownian motion of a classical particle in one-dimensional inhomogeneous environments where the transition probabilities follow quasiperiodic or aperiodic distributions. Exploiting an exact correspondence with the transverse-field Ising model with inhomogeneous couplings, we obtain many analytical results for the random walk problem. In the absence of global bias the qualitative behavior of the diffusive motion of the particle and the corresponding persistence probability strongly depend on the fluctuation properties of the environment. In environments with bounded fluctuations the particle shows normal diffusive motion and the diffusion constant is simply related to the persistence probability. On the other hand, in a medium with unbounded fluctuations the diffusion is ultraslow and the displacement of the particle grows on logarithmic time scales. For the borderline situation with marginal fluctuations both the diffusion exponent and the persistence exponent are continuously varying functions of the aperiodicity. Extensions of the results to disordered media and to higher dimensions are also discussed.
引用
收藏
页码:1465 / 1474
页数:10
相关论文
共 50 条
  • [1] Anomalous diffusion in aperiodic environments
    Igloi, Ferenc
    Turban, Loic
    Rieger, Heiko
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-A):
  • [2] Models of anomalous diffusion in crowded environments
    Sokolov, Igor M.
    SOFT MATTER, 2012, 8 (35) : 9043 - 9052
  • [3] SLOW RELAXATION, ANOMALOUS DIFFUSION, AND AGING IN EQUILIBRATED OR NONEQUILIBRATED ENVIRONMENTS
    Pottier, Noelle
    FRACTALS, DIFFUSION, AND RELAXATION IN DISORDERED COMPLEX SYSTEMS, PART A, 2006, 133 : 257 - 325
  • [4] Discriminating between Anomalous Diffusion and Transient Behavior in Microheterogeneous Environments
    Berezhkovskii, Alexander M.
    Dagdug, Leonardo
    Bezrukov, Sergey M.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : L09 - L11
  • [5] Anomalous diffusion of self-propelled particles in directed random environments
    Shaebani, M. Reza
    Sadjadi, Zeinab
    Sokolov, Igor M.
    Rieger, Heiko
    Santen, Ludger
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [6] Advancements in Superresolution Correlation Analysis to Image Anomalous Diffusion in Crowded Environments
    Kisley, Lydia
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 20A - 20A
  • [7] Aperiodic Undulation in High Resistance Environments
    Pierce, Christopher
    Peng, Lucinda
    Lu, Hang
    Goldman, Daniel
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2023, 63 : S361 - S362
  • [8] Anomalous localization in the aperiodic Kronig-Penney model
    Hernandez-Herrejon, J. C.
    Izrailev, F. M.
    Tessieri, L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (42)
  • [9] Reusing OE-Scheduler in aperiodic environments
    Lee, Haesun K.
    lee, Ilhyun
    2006 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY, 2006, : 256 - 261
  • [10] Anomalous diffusion
    Vainstein, Mendeli H.
    Lapas, Luciano C.
    Oliveira, Fernando A.
    ACTA PHYSICA POLONICA B, 2008, 39 (05): : 1273 - 1281