Prediction of hot deformation behaviour of Fe-25Mn-3Si-3Al TWIP steel

被引:49
作者
Li, Dejun [1 ,2 ]
Feng, Yaorong [1 ,2 ]
Yin, Zhifu [3 ]
Shangguan, Fengshou [2 ]
Wang, Ke [3 ]
Liu, Qiang [2 ]
Hu, Feng [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, Xian 710049, Peoples R China
[2] CNPC Tubular Goods Res Inst, Xian 710065, Peoples R China
[3] Shaanxi Yanchang Petr Grp Co, Petr Res Inst, Xian 710075, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2011年 / 528卷 / 28期
关键词
TWIP steel; Hot deformation; Constitutive equation; Dynamic recrystallization; AUSTENITIC STAINLESS-STEEL; RECRYSTALLIZATION; COMPRESSION; ALUMINUM; ALLOY;
D O I
10.1016/j.msea.2011.07.073
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hot deformation behaviour of Fe-25Mn-3Si-3Al twinning-induced plasticity (TWIP) steel was investigated by hot compression testing on Gleeble 3500 thermo-mechanical simulator in the temperature range from 800 to 1100 degrees C and at strain rate range from 0.01 to 5(-1), and the microstructural evolution was studied by metallographic observations. The results show that the true stress-true strain curves exhibit a single peak stress at certain strain, after which the flow stresses decrease monotonically until the end of deformation, showing a dynamic flow softening. The peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be predicted by the Zener-Hollomon (Z) parameter in the hyperbolic sine equation with the hot deformation activation energy Q of 405.95 kJ/mol. The peak and critical strains can also be predicted by Z parameter in power-law equations, and the ratio of critical strain to peak strain is about 0.7. The dynamic recrystallization (DRX) is the most important softening mechanism for the experimental steel during hot compression. Furthermore, DRX procedure is strongly affected by Z parameter, and the decreasing of z value leads to more extensive DRX. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:8084 / 8089
页数:6
相关论文
共 17 条
[1]   Prediction of hot deformation behaviour of 10Cr-10Ni-5Mo-2Cu steel [J].
Abbasi, S. M. ;
Shokuhfar, A. .
MATERIALS LETTERS, 2007, 61 (11-12) :2523-2526
[2]   A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel [J].
Allain, S ;
Chateau, JP ;
Bouaziz, O .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 :143-147
[3]   High temperature deformation behavior of Al-Cu-Mg alloys micro-alloyed with Sn [J].
Banerjee, Sanjib ;
Robi, P. S. ;
Srinivasan, A. ;
Kumar, Lakavath Praveen .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (10-11) :2498-2503
[4]   Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions [J].
Barbier, D. ;
Gey, N. ;
Allain, S. ;
Bozzolo, N. ;
Humbert, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 500 (1-2) :196-206
[5]  
Cho J.R., 2010, J MATER PROCESS TECH, V50, P227
[6]   Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization [J].
Dehghan-Manshadi, A. ;
Barnett, Mr. ;
Hodgson, P. D. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2008, 39A (06) :1359-1370
[7]   Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation [J].
Dehghan-Manshadi, A. ;
Barnett, M. R. ;
Hodgson, P. D. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 485 (1-2) :664-672
[8]   High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development -: properties -: application [J].
Grässel, O ;
Krüger, L ;
Frommeyer, G ;
Meyer, LW .
INTERNATIONAL JOURNAL OF PLASTICITY, 2000, 16 (10-11) :1391-1409
[9]   The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels [J].
Hamada, A. S. ;
Karjalainen, L. P. ;
Somani, M. C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 467 (1-2) :114-124
[10]   Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature [J].
Huang, Xudong ;
Zhang, Hui ;
Han, Yi ;
Wu, Wenxiang ;
Chen, Jianghua .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (03) :485-490