Sparse decomposition of gene expression data to infer transcriptional modules guided by motif information

被引:0
作者
Gong, Ting [1 ]
Xuan, Jianhua [1 ]
Chen, Li [1 ]
Riggins, Rebecca B. [2 ]
Wang, Yue [1 ]
Hoffman, Eric P. [3 ]
Clarke, Robert [2 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Arlington, VA 22203 USA
[2] Georgetown Univ, Dept Oncol & Physiol & Biophy, Washington, DC 20057 USA
[3] Childrens Natl Med Ctr, Res Ctr Genet Med, Washington, DC 20010 USA
来源
BIOINFORMATICS RESEARCH AND APPLICATIONS | 2008年 / 4983卷
关键词
motif analysis; sparse component analysis; transcriptional modules; gene regulatory networks; estrogen receptor binding;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An important topic in computational biology is to identify transcriptional modules through sequence analysis and gene expression profiling. A transcriptional module is formed by a group of genes under control of one or several transcription factors (TFs) that bind to cis-regulatory elements in the promoter regions of those genes. In this paper, we develop an integrative approach, namely motif-guided sparse decomposition (mSD), to uncover transcriptional modules by combining motif information and gene expression data. The method exploits the interplay of co-expression and co-regulation to find regulated gene patterns guided by TF binding information. Specifically, a motif-guided clustering method is first developed to estimate transcription factor binding activities (TFBAs); sparse component analysis is then followed to further identify TFs' target genes. The experimental results show that the mSD approach can successfully help uncover condition-specific transcriptional modules that may have important implications in endocrine therapy of breast cancer.
引用
收藏
页码:244 / +
页数:3
相关论文
共 17 条
[1]  
ALI AA, 2006, AIP C P, V872, P123
[2]  
[Anonymous], 2003, Statistical Analysis of Gene Expression Microarray Data. Interdisciplinary Statistics
[3]   Genome-wide analysis of estrogen receptor binding sites [J].
Carroll, Jason S. ;
Meyer, Clifford A. ;
Song, Jun ;
Li, Wei ;
Geistlinger, Timothy R. ;
Eeckhoute, Jerome ;
Brodsky, Alexander S. ;
Keeton, Erika Krasnickas ;
Fertuck, Kirsten C. ;
Hall, Giles F. ;
Wang, Qianben ;
Bekiranov, Stefan ;
Sementchenko, Victor ;
Fox, Edward A. ;
Silver, Pamela A. ;
Gingeras, Thomas R. ;
Liu, X. Shirley ;
Brown, Myles .
NATURE GENETICS, 2006, 38 (11) :1289-1297
[4]   Clustering by passing messages between data points [J].
Frey, Brendan J. ;
Dueck, Delbert .
SCIENCE, 2007, 315 (5814) :972-976
[5]   Sparse component analysis and blind source separation of underdetermined mixtures [J].
Georgiev, P ;
Theis, F ;
Cichocki, A .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (04) :992-996
[6]   PromoSer: a large-scale mammalian promoter and transcription start site identification service [J].
Halees, AS ;
Leyfer, D ;
Weng, ZP .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3554-3559
[7]  
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
[8]   A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data -: A case study using E2F1 [J].
Jin, Victor X. ;
Rabinovich, Alina ;
Squazzo, Sharon L. ;
Green, Roland ;
Farnham, Peggy J. .
GENOME RESEARCH, 2006, 16 (12) :1585-1595
[9]   MATCH™:: a tool for searching transcription factor binding sites in DNA sequences [J].
Kel, AE ;
Gössling, E ;
Reuter, I ;
Cheremushkin, E ;
Kel-Margoulis, OV ;
Wingender, E .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3576-3579
[10]  
Kohonen T., 1997, Self-organizing Maps, V2nd ed.