Thermal and Evolved Gas Analyzer: Part of the Mars Volatile and Climate Surveyor integrated payload

被引:37
作者
Boynton, WV [1 ]
Bailey, SH
Hamara, DK
Williams, MS
Bode, RC
Fitzgibbon, MR
Ko, WJ
Ward, MG
Sridhar, KR
Blanchard, JA
Lorenz, RD
May, RD
Paige, DA
Pathare, AV
Kring, DA
Leshin, LA
Ming, DW
Zent, AP
Golden, DC
Kerry, KE
Lauer, HV
Quinn, RC
机构
[1] Univ Arizona, Dept Planetary Sci, Lunar & Planetary Lab, Tucson, AZ 85721 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
[3] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA
[4] Johnson Space Ctr, Houston, TX USA
[5] Ames Res Ctr, Moffett Field, CA USA
关键词
D O I
10.1029/1999JE001153
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Thermal and Evolved Gas Analyzer (TEGA) on the Mars Polar Lander spacecraft is composed of two separate components which are closely coupled: a Differential Scanning Calorimeter (DSC) and an Evolved Gas Analyzer (EGA). TEGA has the capability of performing differential scanning calorimetry on eight small (0.038 mL) soil samples selected in the vicinity of the lander. The samples will be heated in ovens to temperatures up to 950 degreesC, and the volatile compounds water and carbon dioxide, which are released during the heating, will be analyzed in the EGA. The power required by the sample oven is continuously monitored during the heating and compared to that required to heat simultaneously a similar, but empty, oven. The power difference is the output of the DSC. Both endothermic and exothermic phase transitions can be detected, and the data can be used in the identification of the phases present. By correlating the gas release with the calorimetry, the abundance of the volatile compounds associated with the different phases can be determined. The EGA may also be able to detect the release of oxygen associated with any superoxide that may be on the surface of the soil grains. The instrument can detect the melting of ice in the DSC down to abundances on the order of 0.2% of the sample, and it can detect the decomposition of calcite, CaCO3, down to abundances of 0.5%. Using the EGA, TEGA can detect small amounts of water, down to 8 ppm in the sample, and it can detect the associated release of CO2 down to the equivalent abundances of 0.03%. The EGA also has the ability to determine the C-13/C-12 ratio in the evolved CO2, but it is not clear if the accuracy of this ratio will be sufficient to address the scientific issues.
引用
收藏
页码:17683 / 17698
页数:16
相关论文
共 45 条
[1]   WATER-VAPOR ADSORPTION BY SODIUM MONTMORILLONITE AT-5-DEGREES-C [J].
ANDERSON, DM ;
SCHWARZ, MJ ;
TICE, AR .
ICARUS, 1978, 34 (03) :638-644
[2]  
BLANCHARD JA, 1998, THESIS U ARIZ TUCSON
[3]  
BLAZEK A, 1972, THERMAL ANAL
[4]   MARS - A WATER-RICH PLANET [J].
CARR, MH .
ICARUS, 1986, 68 (02) :187-216
[5]   MARTIAN ATMOSPHERIC CARBON-DIOXIDE AND WEATHERING PRODUCTS IN SNC METEORITES [J].
CARR, RH ;
GRADY, MM ;
WRIGHT, IP ;
PILLINGER, CT .
NATURE, 1985, 314 (6008) :248-250
[6]   ISOTOPIC COMPOSITION OF CARBONATE IN EETA-79001 AND ITS RELATION TO PARENT BODY VOLATILES [J].
CLAYTON, RN ;
MAYEDA, TK .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1988, 52 (04) :925-927
[7]   THE STABILITY OF GROUND ICE IN THE EQUATORIAL REGION OF MARS [J].
CLIFFORD, SM ;
HILLEL, D .
JOURNAL OF GEOPHYSICAL RESEARCH, 1983, 88 (NB3) :2456-2474
[8]  
CLIFFORD SM, 1984, THESIS U MASS AMHERS
[9]  
DEBRUYN CMA, 1954, GEOL MIJNBOUW, V16, P407
[10]  
Fanale F.P., 1992, Mars, P1135