On Lie derivations of Lie ideals of prime algebras

被引:44
作者
Beidar, KI [1 ]
Chebotar, MA
机构
[1] Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
[2] Moscow State Univ, Dept Math & Mech, Moscow, Russia
关键词
D O I
10.1007/BF02784122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a commutative ring with 1, let A be a prime F-algebra with Martindale extended centroid C and with central closure A(c) and let R be a noncentral Lie ideal of the algebra A generating A. Further, let Z(R) be the center of R, let (R) over bar = R/Z(R) be the factor Lie algebra and let delta: (R) over bar --> (R) over bar be a Lie derivation. Suppose that char(A) not equal 2 and A does not satisfy St(14), the standard identity of degree 14. We show that R boolean AND C = Z(R) and there exists a derivation of algebras D: A --> A(c) such that x(D) + C = (x + C)(delta) is an element of (R + C)/C = (R) over bar for all x is an element of R. Our result solves an old problem of Herstein.
引用
收藏
页码:131 / 148
页数:18
相关论文
共 35 条
[1]   ON SEMI-AUTOMORPHISMS OF DIVISION ALGEBRAS [J].
ANCOCHEA, G .
ANNALS OF MATHEMATICS, 1947, 48 (01) :147-153
[2]  
ANCOCHEA G, 1942, J REINE ANGEW MATH, V184, P192
[3]   LIE ISOMORPHISMS IN PRIME-RINGS WITH INVOLUTION [J].
BEIDAR, KI ;
MARTINDALE, WS ;
MIKHALEV, AV .
JOURNAL OF ALGEBRA, 1994, 169 (01) :304-327
[4]   On functional identities and d-free subsets of rings.: I [J].
Beidar, KI ;
Chebotar, MA .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (08) :3925-3951
[5]  
Beidar KI, 2000, COMMUN ALGEBRA, V28, P3953, DOI 10.1080/00927870008827067
[6]   On additive isomorphisms of prime rings preserving polynomials [J].
Beidar, KI ;
Fong, Y .
JOURNAL OF ALGEBRA, 1999, 217 (02) :650-667
[7]   Lie isomorphisms of non-GPI rings with involution [J].
Blau, PS .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (05) :2345-2373
[8]   Maps preserving nth powers [J].
Bresar, M ;
Martindale, WS ;
Miers, CR .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (01) :117-138
[10]   On Lie isomorphisms in prime rings with involution [J].
Chebotar, MA .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (06) :2767-2777