Adaptive-Size Dictionary Learning Using Information Theoretic Criteria

被引:6
作者
Dumitrescu, Bogdan [1 ]
Giurcaneanu, Ciprian Doru [2 ]
机构
[1] Univ Politehn Bucuresti, Dept Automat Control & Comp, 313 Spl Independentei, Bucharest 060042, Romania
[2] Univ Auckland, Dept Stat, Auckland 1142, New Zealand
关键词
dictionary learning; sparse representation; information theoretic criteria; dictionary size; SELECTION; DESIGN; SVD;
D O I
10.3390/a12090178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finding the size of the dictionary is an open issue in dictionary learning (DL). We propose an algorithm that adapts the size during the learning process by using Information Theoretic Criteria (ITC) specialized to the DL problem. The algorithm is built on top of Approximate K-SVD (AK-SVD) and periodically removes the less used atoms or adds new random atoms, based on ITC evaluations for a small number of candidate sub-dictionaries. Numerical experiments on synthetic data show that our algorithm not only finds the true size with very good accuracy, but is also able to improve the representation error in comparison with AK-SVD knowing the true size.
引用
收藏
页数:13
相关论文
共 30 条
[1]  
Agarwal A., 2014, COLT, P123
[2]   AUTOREGRESSIVE MODEL FITTING FOR CONTROL [J].
AKAIKE, H .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1971, 23 (02) :163-&
[3]  
[Anonymous], STAT INFERENCE EC AN
[4]  
Arora S., 2014, PMLR, P779
[5]   Extended Bayesian information criteria for model selection with large model spaces [J].
Chen, Jiahua ;
Chen, Zehua .
BIOMETRIKA, 2008, 95 (03) :759-771
[6]  
Dumitrescu B., 2018, DICT LEARNING ALGORI, DOI DOI 10.1007/978-3-319-78674-2
[7]  
Elad M, 2008, CS200808 TU HAIF
[8]  
Feng JZ, 2009, IEEE IMAGE PROC, P2149, DOI 10.1109/ICIP.2009.5414328
[9]   Variable selection in linear regression: Several approaches based on normalized maximum likelihood [J].
Giurcaneanu, Ciprian Doru ;
Razavi, Seyed Alireza ;
Liski, Antti .
SIGNAL PROCESSING, 2011, 91 (08) :1671-1692
[10]  
HANNAN EJ, 1979, J ROY STAT SOC B MET, V41, P190