BAP: Bimodal Attribute Prediction for Zero-Shot Image Categorization

被引:10
作者
Li, Hanhui [1 ]
Li, Donghui
Luo, Xiaonan
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, State Prov Joint Lab Digital Home Interact Applic, Natl Engn Res Ctr Digital Life, Guangzhou, Guangdong, Peoples R China
来源
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14) | 2014年
基金
中国国家自然科学基金;
关键词
Zero-shot Learning; Attribute Prediction; Image Categorization;
D O I
10.1145/2647868.2655023
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent advances in attribute-based methods provide the zero-shot learning problem with practical solutions. In attribute-based methods, visual attributes are introduced to fill the gap between low-level image features and high-level semantic information. This paper proposes a novel bimodal attribute prediction model called BAP, which can better predict visual attributes in images. BAP fuses advantages of the conventional direct attribute prediction (DAP) and indirect attribute prediction (IAP) on the level of attribute prediction. It contains an attribute-classifier pooling process that generates a large amount of base classifiers and a combination strategy that integrates these classifiers. We explore and propose four BAP models with different combination strategies in this paper, and experimentally show that our BAP outperforms the conventional models both in offline and online zero-shot image categorization.
引用
收藏
页码:1013 / 1016
页数:4
相关论文
共 9 条
[1]  
[Anonymous], P ACM MULT C MM 12 N
[2]  
[Anonymous], ICCV
[3]  
[Anonymous], 2012, P ACM INT C MULT
[4]  
Kankuekul P, 2012, PROC CVPR IEEE, P3657, DOI 10.1109/CVPR.2012.6248112
[5]  
Kovashka A, 2012, PROC CVPR IEEE, P2973, DOI 10.1109/CVPR.2012.6248026
[6]   Decision templates for multiple classifier fusion: an experimental comparison [J].
Kuncheva, LI ;
Bezdek, JC ;
Duin, RPW .
PATTERN RECOGNITION, 2001, 34 (02) :299-314
[7]  
Lampert CH, 2009, PROC CVPR IEEE, P951, DOI 10.1109/CVPRW.2009.5206594
[8]  
Wang Y, 2010, LECT NOTES COMPUT SC, V6315, P155, DOI 10.1007/978-3-642-15555-0_12
[9]  
Zhou ZH., 2012, Ensemble Methods: Foundations and Algorithms