Investigation of self-heating effects in submicrometer GaN/AlGaN HEMTs using an electrothermal Monte Carlo method

被引:77
作者
Sadi, Toufik [1 ]
Kelsall, Robert W.
Pilgrim, Neil J.
机构
[1] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Aberdeen, Dept Phys, Aberdeen AB24 3UE, Scotland
关键词
electrothermal simulations; III-N; Monte Carlo (MC); wurtzite GaN/AlGaN high-electron mobility transistors; (HEMTs);
D O I
10.1109/TED.2006.885099
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An electrothermal Monte Carlo (MC) method is applied in this paper to investigate electron transport in submicr ometer wurtzite GaN/AlGaN high-electron mobility transistors (HEMTs) grown on various substrate materials including SiC, Si, GaN, and sapphire. The simulation method is an iterative technique that alternately runs an MC electronic simulation and solves the heat diffusion equation using an analytical thermal resistance matrix method. Results demonstrate how the extent of the thermal droop in the I-d-V-ds characteristics and the device peak temperature depend upon both the biasing conditions and the substrate material type. Polarization effects are considered in the simulations, as they greatly influence electron transport in GaN/AlGaN HEMTs by creating a highly concentrated two-dimensional electron gas (2DEG) at the GaN/AlGaN interface. It is shown that a higher 2DEG density provides the devices with a better current handling capability but also increases the importance of the thermal effects.
引用
收藏
页码:2892 / 2900
页数:9
相关论文
共 27 条
[1]   AlGaN/GaN heterostructure field-effect transistor model including thermal effects [J].
Albrecht, JD ;
Ruden, PP ;
Binari, SC ;
Ancona, MG .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (11) :2031-2036
[2]   Electron transport characteristics of GaN for high temperature device modeling [J].
Albrecht, JD ;
Wang, RP ;
Ruden, PP ;
Farahmand, M ;
Brennan, KF .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (09) :4777-4781
[3]   Electrothermal CAD of power devices and circuits with fully physical time-dependent compact thermal modeling of complex nonlinear 3-D systems [J].
Batty, W ;
Christoffersen, CE ;
Panks, AJ ;
David, S ;
Snowden, CM ;
Steer, MB .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2001, 24 (04) :566-590
[4]   Recessed gate GaN modfets [J].
Burm, J ;
Schaff, WJ ;
Martin, GH ;
Eastman, LF ;
Amano, H ;
Akasaki, I .
SOLID-STATE ELECTRONICS, 1997, 41 (02) :247-250
[5]   High-power microwave 0.25-μm gate doped-channel GaN/AlGaN heterostructure field effect transistor [J].
Chen, Q ;
Yang, JW ;
Gaska, R ;
Khan, MA ;
Shur, MS ;
Sullivan, GJ ;
Sailor, AL ;
Higgings, JA ;
Ping, AT ;
Adesida, I .
IEEE ELECTRON DEVICE LETTERS, 1998, 19 (02) :44-46
[6]  
Duboz JY, 1999, PHYS STATUS SOLIDI A, V176, P5, DOI 10.1002/(SICI)1521-396X(199911)176:1<5::AID-PSSA5>3.0.CO
[7]  
2-D
[8]   Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: Binaries and ternaries [J].
Farahmand, M ;
Garetto, C ;
Bellotti, E ;
Brennan, KF ;
Goano, M ;
Ghillino, E ;
Ghione, G ;
Albrecht, JD ;
Ruden, PP .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (03) :535-542
[9]   Transient electron transport in wurtzite GaN, InN, and AlN [J].
Foutz, BE ;
O'Leary, SK ;
Shur, MS ;
Eastman, LF .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (11) :7727-7734
[10]   THERMAL CONDUCTIVITY OF SILICON + GERMANIUM FROM 3 DEGREES K TO MELTING POINT [J].
GLASSBRENNER, CJ ;
SLACK, GA .
PHYSICAL REVIEW, 1964, 134 (4A) :1058-+