On generalized Φ-strongly monotone mappings and algorithms for the solution of equations of Hammerstein type

被引:0
作者
Aibinu, Mathew O. [1 ,2 ]
Mewomo, Oluwatosin T. [3 ]
机构
[1] Durban Univ Technol, Inst Syst Sci, Durban, South Africa
[2] Durban Univ Technol, KZN E Skills CoLab, Durban, South Africa
[3] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2021年 / 12卷 / 01期
关键词
Generalized Phi-strongly monotone; Hammerstein equation; Strong convergence; NONLINEAR INTEGRAL-EQUATIONS; STRONG-CONVERGENCE; UNIFORMLY CONVEX; INEQUALITIES; OPERATORS; EXISTENCE; THEOREMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the class of generalized Phi-strongly monotone mappings and the methods of approximating a solution of equations of Hammerstein type. Auxiliary mapping is defined for nonlinear integral equations of Hammerstein type. The auxiliary mapping is the composition of bounded generalized Phi-strongly monotone mappings which satisfy the range condition. Suitable conditions are imposed to obtain the boundedness and to show that the auxiliary mapping is a generalized Phi-strongly which satisfies the range condition. A sequence is constructed and it is shown that it converges strongly to a solution of equations of Hammerstein type. The results in this paper improve and extend some recent corresponding results on the approximation of a solution of equations of Hammerstein type.
引用
收藏
页码:615 / 632
页数:18
相关论文
共 31 条
[1]   Strong Convergence Theorems for Strongly Monotone Mappings in Banach spaces [J].
Aibinu, M. O. ;
Mewomo, O. T. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (01) :169-187
[2]  
Aibinu M. O., 2020, ABSTR APPL AN, V2020, P1
[3]  
Aibinu M. O., 2017, P SO AFR MATH SCI AS, P35
[4]  
Alber Y., 2006, Nonlinear Ill-Posed Problems of Monotone Type
[5]  
[Anonymous], 1985, NONLINEAR FUNCTION 2
[6]   EXISTENCE THEOREMS FOR NONLINEAR INTEGRAL-EQUATIONS OF HAMMERSTEIN TYPE [J].
BREZIS, H ;
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (01) :73-78
[7]   SOME NEW RESULTS ABOUT HAMMERSTEIN EQUATIONS [J].
BREZIS, H ;
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (03) :567-572
[8]   NONLINEAR INTEGRAL-EQUATIONS AND SYSTEMS OF HAMMERSTEIN TYPE [J].
BREZIS, H ;
BROWDER, FE .
ADVANCES IN MATHEMATICS, 1975, 18 (02) :115-147
[9]   MONOTONE OPERATORS AND NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE [J].
BROWDER, FE ;
GUPTA, CP .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (06) :1347-&
[10]  
Chepanovich RS., 1984, PUBL I MATH BELGR, V35, P119