INVERSE PROBLEM FOR STURM-LIOUVILLE OPERATORS ON A CURVE

被引:2
作者
Golubkov, Andrey Alexandrovich [1 ]
Kuryshova, Yulia Vladimirovna [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Adv Educ & Sci Ctr, 11 Kremenchugskaya Str, Moscow 121357, Russia
来源
TAMKANG JOURNAL OF MATHEMATICS | 2019年 / 50卷 / 03期
关键词
Inverse spectral problem on a curve; method of a unit transfer matrix; Sturm-Liouville equation; piecewise-entire potential function; solution jump conditions; asymptotic behavior of solutions; RECONSTRUCTION; PERMITTIVITY; EQUATION; SPECTRUM;
D O I
10.5556/j.tkjm.50.2019.3368
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The inverse spectral problem for the Sturm-Liouville equation with a piecewise-entire potential function and the discontinuity conditions for solutions on a rectifiable curve gamma subset of C by the transfer matrix along this curve is studied. By the method of a unit transfer matrix the uniqueness of the solution to this problem is proved with the help of studying of the asymptotic behavior of the solutions to the Sturm-Liouville equation for large values of the spectral parameter module.
引用
收藏
页码:349 / 359
页数:11
相关论文
共 20 条
[1]   Reconstruction of the Spectrum of the Relative Permittivity of the Plane-Parallel Plate from the Angular Dependences of Its Transmission Coefficients [J].
Angeluts, A. A. ;
Golubkov, A. A. ;
Makarov, V. A. ;
Shkurinov, A. P. .
JETP LETTERS, 2011, 93 (04) :191-194
[2]  
[Anonymous], 1991, MATH ITS APPL SOVIET
[3]  
Coddington EA, 1955, THEORY ORDINARY DIFF
[4]  
Fedoryuk M.V., 1993, Asymptotic Analysis: Linear Ordinary Differential Equations
[5]  
FREILING G., 2001, Inverse Sturm-Liouville Problems and Their Applications
[6]   Asymptotics of Transfer Matrix of Sturm-Liouville Equation with Piecewise-Entire Potential Function on a Curve [J].
Golubkov, A. A. .
MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2019, 74 (02) :65-69
[7]   Inverse Problem for Sturm - Liouville Operators in the Complex Plane [J].
Golubkov, A. A. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2018, 18 (02) :144-156
[8]   Inverse spectral problem for a generalized Sturm-Liouville equation with complex-valued coefficients [J].
Golubkov, A. A. ;
Makarov, V. A. .
DIFFERENTIAL EQUATIONS, 2011, 47 (10) :1514-1519
[9]   Reconstruction of the coordinate dependence of the diagonal form of the dielectric permittivity tensor of a one-dimensionally inhomogeneous medium [J].
Golubkov, A. A. ;
Makarov, V. A. .
MOSCOW UNIVERSITY PHYSICS BULLETIN, 2010, 65 (03) :189-194
[10]   LOCALIZATION CRITERION FOR THE SPECTRUM OF THE STURM-LIOUVILLE OPERATOR ON A CURVE [J].
Ishkin, Kh. K. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2017, 28 (01) :37-63