Detecting web attacks with end-to-end deep learning

被引:43
作者
Pan, Yao [1 ]
Sun, Fangzhou [1 ]
Teng, Zhongwei [1 ]
White, Jules [1 ]
Schmidt, Douglas C. [1 ]
Staples, Jacob [2 ]
Krause, Lee [2 ]
机构
[1] Vanderbilt Univ, Dept EECS, 221 Kirkland Hall, Nashville, TN 37235 USA
[2] Securboration Inc, Melbourne, FL USA
关键词
Web security; Deep learning; Application instrumentation; INTRUSION DETECTION; NETWORK; PCA;
D O I
10.1186/s13174-019-0115-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Web applications are popular targets for cyber-attacks because they are network-accessible and often contain vulnerabilities. An intrusion detection system monitors web applications and issues alerts when an attack attempt is detected. Existing implementations of intrusion detection systems usually extract features from network packets or string characteristics of input that are manually selected as relevant to attack analysis. Manually selecting features, however, is time-consuming and requires in-depth security domain knowledge. Moreover, large amounts of labeled legitimate and attack request data are needed by supervised learning algorithms to classify normal and abnormal behaviors, which is often expensive and impractical to obtain for production web applications. This paper provides three contributions to the study of autonomic intrusion detection systems. First, we evaluate the feasibility of an unsupervised/semi-supervised approach for web attack detection based on the Robust Software Modeling Tool (RSMT), which autonomically monitors and characterizes the runtime behavior of web applications. Second, we describe how RSMT trains a stacked denoising autoencoder to encode and reconstruct the call graph for end-to-end deep learning, where a low-dimensional representation of the raw features with unlabeled request data is used to recognize anomalies by computing the reconstruction error of the request data. Third, we analyze the results of empirically testing RSMT on both synthetic datasets and production applications with intentional vulnerabilities. Our results show that the proposed approach can efficiently and accurately detect attacks, including SQL injection, cross-site scripting, and deserialization, with minimal domain knowledge and little labeled training data.
引用
收藏
页数:22
相关论文
共 56 条
  • [1] Ananthanarayanan S., 2016, INT C MACH LEARN
  • [2] [Anonymous], 2006, Proceedings of the 4th ACM Workshop on Formal Methods in Security
  • [3] [Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
  • [4] [Anonymous], 2016, DEEP LEARNING
  • [5] [Anonymous], DYNAMIC ANAL PROFILI
  • [6] [Anonymous], ADV NEURAL INFORM PR
  • [7] [Anonymous], 2011, J. Mach. Learn. Technol
  • [8] [Anonymous], 2010, P ICML 2010 P 27 INT
  • [9] Becher M., 2007, Web Application Firewalls
  • [10] Effects of cyber security knowledge on attack detection
    Ben-Asher, Noam
    Gonzalez, Cleotilde
    [J]. COMPUTERS IN HUMAN BEHAVIOR, 2015, 48 : 51 - 61