Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target?

被引:814
作者
Ohue, Yoshihiro [1 ]
Nishikawa, Hiroyoshi [1 ,2 ]
机构
[1] Natl Canc Ctr, Div Canc Immunol, Res Inst, Exploratory Oncol Res & Clin Trial Ctr EPOC, Tokyo, Japan
[2] Nagoya Univ, Dept Immunol, Grad Sch Med, Nagoya, Aichi, Japan
关键词
immune checkpoint; immune suppression; tolerance; Treg; tumor; REG CELLS; TUMOR-IMMUNITY; AUTOIMMUNE-DISEASE; DENDRITIC CELLS; EXPRESSION; INDUCTION; TOLERANCE; EFFECTOR; RECEPTOR; FOXP3;
D O I
10.1111/cas.14069
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self-and nonself-antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T-lymphocyte antigen-4, interleukin (IL)-2 consumption by high-affinity IL-2 receptors with high CD25 (IL-2 receptor alpha-chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoat-tracted to the TME by chemokine gradients such as CCR4-CCL17/22, CCR8-CCL1, CCR10-CCL28, and CXCR3-CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine-tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes.
引用
收藏
页码:2080 / 2089
页数:10
相关论文
共 82 条
[1]   Natural and induced T regulatory cells in cancer [J].
Adeegbe, Dennis O. ;
Nishikawa, Hiroyoshi .
FRONTIERS IN IMMUNOLOGY, 2013, 4
[2]   Tumor-infiltrating human CD4+ regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity [J].
Ahmadzadeh, Mojgan ;
Pasetto, Anna ;
Jia, Li ;
Deniger, Drew C. ;
Stevanovic, Sanja ;
Robbins, Paul F. ;
Rosenberg, Steven A. .
SCIENCE IMMUNOLOGY, 2019, 4 (31)
[3]   Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer [J].
Ali, Khaled ;
Soond, Dalya R. ;
Pineiro, Roberto ;
Hagemann, Thorsten ;
Pearce, Wayne ;
Lim, Ee Lyn ;
Bouabe, Hicham ;
Scudamore, Cheryl L. ;
Hancox, Timothy ;
Maecker, Heather ;
Friedman, Lori ;
Turner, Martin ;
Okkenhaug, Klaus ;
Vanhaesebroeck, Bart .
NATURE, 2014, 510 (7505) :407-+
[4]   Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments [J].
Angelin, Alessia ;
Gil-de-Gomez, Luis ;
Dahiya, Satinder ;
Jiao, Jing ;
Guo, Lili ;
Levine, Matthew H. ;
Wang, Zhonglin ;
Quinn, William J., III ;
Kopinski, Piotr K. ;
Wang, Liqing ;
Akimova, Tatiana ;
Liu, Yujie ;
Bhatti, Tricia R. ;
Han, Rongxiang ;
Laskin, Benjamin L. ;
Baur, Joseph A. ;
Blair, Ian A. ;
Wallace, Douglas C. ;
Hancock, Wayne W. ;
Beier, Ulf H. .
CELL METABOLISM, 2017, 25 (06) :1282-+
[5]   Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota [J].
Atarashi, Koji ;
Tanoue, Takeshi ;
Oshima, Kenshiro ;
Suda, Wataru ;
Nagano, Yuji ;
Nishikawa, Hiroyoshi ;
Fukuda, Shinji ;
Saito, Takuro ;
Narushima, Seiko ;
Hase, Koji ;
Kim, Sangwan ;
Fritz, Joelle V. ;
Wilmes, Paul ;
Ueha, Satoshi ;
Matsushima, Kouji ;
Ohno, Hiroshi ;
Olle, Bernat ;
Sakaguchi, Shimon ;
Taniguchi, Tadatsugu ;
Morita, Hidetoshi ;
Hattori, Masahira ;
Honda, Kenya .
NATURE, 2013, 500 (7461) :232-+
[6]   CCR8+FOXp3+ Treg cells as master drivers of immune regulation [J].
Barsheshet, Yiftah ;
Wildbaum, Gizi ;
Levy, Eran ;
Vitenshtein, Alon ;
Akinseye, Chika ;
Griggs, Jeremy ;
Lira, Sergio A. ;
Karin, Nathan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (23) :6086-6091
[7]   Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction [J].
Bauer, Christian A. ;
Kim, Edward Y. ;
Marangoni, Francesco ;
Carrizosa, Esteban ;
Claudio, Natalie M. ;
Mempel, Thorsten R. .
JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (06) :2425-2440
[8]   The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 [J].
Bennett, CL ;
Christie, J ;
Ramsdell, F ;
Brunkow, ME ;
Ferguson, PJ ;
Whitesell, L ;
Kelly, TE ;
Saulsbury, FT ;
Chance, PF ;
Ochs, HD .
NATURE GENETICS, 2001, 27 (01) :20-21
[9]   Orchestrating the orchestrators: chemokines in control of T cell traffic [J].
Bromley, Shannon K. ;
Mempel, Thorsten R. ;
Luster, Andrew D. .
NATURE IMMUNOLOGY, 2008, 9 (09) :970-980
[10]   Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse [J].
Brunkow, ME ;
Jeffery, EW ;
Hjerrild, KA ;
Paeper, B ;
Clark, LB ;
Yasayko, SA ;
Wilkinson, JE ;
Galas, D ;
Ziegler, SF ;
Ramsdell, F .
NATURE GENETICS, 2001, 27 (01) :68-73