Error estimates for the implicit MAC scheme for the compressible Navier-Stokes equations

被引:21
作者
Gallouet, Thierry [1 ]
Maltese, David [2 ]
Novotny, Antonin [2 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, F-13453 Marseille, France
[2] Univ Toulon & Var, IMATH, EA 2134, BP 20132, F-83957 La Garde, France
关键词
FINITE-VOLUME SCHEME; SUITABLE WEAK SOLUTIONS; NUMERICAL APPROXIMATION; FLUID; FLOW; CONVERGENCE; OPERATOR; SYSTEM;
D O I
10.1007/s00211-018-1007-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence of a solution to the implicit MAC scheme for the compressible Navier-Stokes equations. We derive error estimates for this scheme on two and three dimensional Cartesian grids. Error estimates are obtained by using the discrete version of the relative energy method introduced on the continuous level in Feireisl et al. (J Math Fluid Mech 14(4):717-730, 2012). A systematic use of the theoretical continuous analysis of the equations in combination with the numerical tools is crucial for the result. This error estimate does not uses stability hypotheses on the solution of the numerical scheme.
引用
收藏
页码:495 / 567
页数:73
相关论文
共 47 条
[1]   An L2-stable approximation of the Navier-Stokes convection operator for low-order non-conforming finite elements [J].
Ansanay-Alex, G. ;
Babik, F. ;
Latche, J. C. ;
Vola, D. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 66 (05) :555-580
[2]   A unified method for computing incompressible and compressible flows in boundary-fitted coordinates [J].
Bijl, H ;
Wesseling, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :153-173
[3]   ERROR ESTIMATE FOR TIME-EXPLICIT FINITE VOLUME APPROXIMATION OF STRONG SOLUTIONS TO SYSTEMS OF CONSERVATION LAWS [J].
Cances, Clement ;
Mathis, Helene ;
Seguin, Nicolas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) :1263-1287
[4]   PRESSURE METHOD FOR THE NUMERICAL-SOLUTION OF TRANSIENT, COMPRESSIBLE FLUID-FLOWS [J].
CASULLI, V ;
GREENSPAN, D .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1984, 4 (11) :1001-1012
[5]   A projection method for low speed flows [J].
Colella, P ;
Pao, K .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :245-269
[6]  
Crouzeix M., 1973, REV FRANCAISE AUTOMA, V7, P33
[7]  
Deimling K., 1985, NONLINEAR FUNCTIONAL
[8]  
Ern A., 2002, ELEMENTS FINIS THEOR, P36
[9]   Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes [J].
Eymard, R ;
Gallouet, T ;
Ghilani, M ;
Herbin, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1998, 18 (04) :563-594
[10]  
Eymard R, 2010, MATH COMPUT, V79, P649, DOI 10.1090/S0025-5718-09-02310-2