Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry

被引:55
|
作者
Duan, Chengjiao [1 ,2 ]
Wang, Yuhan [3 ]
Wang, Qiang [3 ]
Ju, Wenliang [1 ,4 ]
Zhang, Zhiqin [3 ]
Cui, Yongxing [1 ,5 ]
Beiyuan, Jingzi [6 ]
Fan, Qiaohui [7 ]
Wei, Shiyong [1 ]
Li, Shiqing [1 ]
Fang, Linchuan [1 ,8 ]
机构
[1] Inst Soil & Water Conservat CAS & MWR, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Northwest A&F Univ, Coll Nat Resources & Environm, Yangling 712100, Shaanxi, Peoples R China
[4] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
[5] Peking Univ, Coll Urban & Environm Sci, Sino French Inst Earth Syst Sci, Beijing 100871, Peoples R China
[6] Foshan Univ, Sch Environm & Chem Engn, Foshan 528000, Peoples R China
[7] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou 730000, Peoples R China
[8] CAS Ctr Excellence Quaternary Sci & Global Change, Xian 710061, Peoples R China
基金
中国国家自然科学基金;
关键词
Potentially toxic elements; Phytoremediation; Rhizosphere; Ecoenzymatic stoichiometry; Microbial metabolic limitation; VEGETATION RESTORATION; FUNCTIONAL DIVERSITY; NUTRIENT LIMITATION; ENZYME-ACTIVITIES; LOESS PLATEAU; CARBON; AVAILABILITY; GRASSLAND; COMMUNITY; DYNAMICS;
D O I
10.1016/j.envpol.2022.118978
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Slow nutrient turnover and destructed soil function were the main factors causing low efficiency in phytoremediation of heavy metal (HM)-contaminated soil. Soil ecoenzymatic stoichiometry can reflect the ability of soil microorganisms to acquire energy and nutrients, and drive nutrient cycling and carbon (C) decomposition in HM contaminated soil. Therefore, for the first time, we used the enzymatic stoichiometry modeling to examine the microbial nutrient limitation in rhizospheric and bulk soil of different plants (Medicago sativa, Halogeton arachnoideus and Agropyron cristatum) near the Baiyin Copper Mine. Results showed that the main pollutants in this area were Cu, Zn, Cd, and Pb, while Cd and Zn have the greatest contribution according to the analysis of pollution load index (PLI). The activities of soil C-, nitrogen (N)-, and phosphorus (P)-acquiring enzymes in the rhizosphere of plants were significantly greater than that in bulk soil. Moreover, microbial C and P limitations were observed in all plant treatments, while the lower limitation was generally in the rhizosphere compared to bulk soil. The HM stress significantly increased microbial C limitation and decreased microbial P limitation, especially in the rhizospheric soil. The partial least squares path modeling (PLS-PM) further indicated that HM concentration has the greatest effects on microbial P limitation (-0.64). In addition, the highest enzyme activities and the lowest P limitation were observed in the rhizospheric and bulk soil of M. sativa, thereby implying that soil microbial communities under the remediation of M. sativa were steadier and more efficient in terms of their metabolism. These findings are important for the elucidation of the nutrient cycling and microbial metabolism of rhizosphere under phytoremediation, and provide guidance for the restoration of HM-contaminated soil.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Effects of heavy metal stress on the metabolic quotient of the soil microflora
    Insam, H
    Hutchinson, TC
    Reber, HH
    SOIL BIOLOGY & BIOCHEMISTRY, 1996, 28 (4-5): : 691 - 694
  • [42] Linkages between ecoenzymatic stoichiometry and microbial community structure under long-term fertilization in paddy soil: A case study in China
    Qaswar, Muhammad
    Jing, Huang
    Ahmed, Waqas
    Abbas, Muhammad
    Dongchu, Li
    Khan, Zulqarnain Haider
    Jusheng, Gao
    Shujun, Liu
    Huimin, Zhang
    APPLIED SOIL ECOLOGY, 2021, 161
  • [43] Temporal variation of microbial nutrient limitation in citrus plantations: Insights from soil enzyme stoichiometry
    Du, Yingni
    Wei, Yujie
    Zhou, Yiwen
    Wang, Yundong
    Zhang, Aiqun
    Wang, Tianwei
    Li, Zhaoxia
    ENVIRONMENTAL RESEARCH, 2024, 258
  • [44] Effect of co-existing plant specie on soil microbial activity under heavy metal stress
    Nwuche, C. O.
    Ugoji, E. O.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2010, 7 (04) : 697 - 704
  • [45] Effect of co-existing plant specie on soil microbial activity under heavy metal stress
    C. O. Nwuche
    E. O. Ugoji
    International Journal of Environmental Science & Technology, 2010, 7 : 697 - 704
  • [46] C:N:P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess
    Griffiths B.S.
    Spilles A.
    Bonkowski M.
    Ecological Processes, 1 (1) : 1 - 11
  • [47] Coupling and Decoupling of Soil Carbon and Nutrient Cycles Across an Aridity Gradient in the Drylands of Northern China: Evidence From Ecoenzymatic Stoichiometry
    Feng, Jiao
    Wei, Kai
    Chen, Zhenhua
    Lu, Xiaotao
    Tian, Jihui
    Wang, Chao
    Chen, Lijun
    GLOBAL BIOGEOCHEMICAL CYCLES, 2019, 33 (05) : 559 - 569
  • [48] Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil
    Deng, Linjing
    Zeng, Guangming
    Fan, Changzheng
    Lu, Lunhui
    Chen, Xunfeng
    Chen, Ming
    Wu, Haipeng
    He, Xiaoxiao
    He, Yan
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (19) : 8259 - 8269
  • [49] Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil
    Linjing Deng
    Guangming Zeng
    Changzheng Fan
    Lunhui Lu
    Xunfeng Chen
    Ming Chen
    Haipeng Wu
    Xiaoxiao He
    Yan He
    Applied Microbiology and Biotechnology, 2015, 99 : 8259 - 8269
  • [50] The effects of postfire regeneration patterns on soil microbial metabolic limitation based on eco-enzyme stoichiometry in the boreal forest of China
    Yang, Lixue
    Gu, Jiaxin
    Yang, Yibing
    Yang, Yuchun
    Shan, Chengfeng
    Shen, Fangyuan
    FOREST ECOLOGY AND MANAGEMENT, 2024, 568