Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry

被引:55
|
作者
Duan, Chengjiao [1 ,2 ]
Wang, Yuhan [3 ]
Wang, Qiang [3 ]
Ju, Wenliang [1 ,4 ]
Zhang, Zhiqin [3 ]
Cui, Yongxing [1 ,5 ]
Beiyuan, Jingzi [6 ]
Fan, Qiaohui [7 ]
Wei, Shiyong [1 ]
Li, Shiqing [1 ]
Fang, Linchuan [1 ,8 ]
机构
[1] Inst Soil & Water Conservat CAS & MWR, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Northwest A&F Univ, Coll Nat Resources & Environm, Yangling 712100, Shaanxi, Peoples R China
[4] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
[5] Peking Univ, Coll Urban & Environm Sci, Sino French Inst Earth Syst Sci, Beijing 100871, Peoples R China
[6] Foshan Univ, Sch Environm & Chem Engn, Foshan 528000, Peoples R China
[7] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou 730000, Peoples R China
[8] CAS Ctr Excellence Quaternary Sci & Global Change, Xian 710061, Peoples R China
基金
中国国家自然科学基金;
关键词
Potentially toxic elements; Phytoremediation; Rhizosphere; Ecoenzymatic stoichiometry; Microbial metabolic limitation; VEGETATION RESTORATION; FUNCTIONAL DIVERSITY; NUTRIENT LIMITATION; ENZYME-ACTIVITIES; LOESS PLATEAU; CARBON; AVAILABILITY; GRASSLAND; COMMUNITY; DYNAMICS;
D O I
10.1016/j.envpol.2022.118978
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Slow nutrient turnover and destructed soil function were the main factors causing low efficiency in phytoremediation of heavy metal (HM)-contaminated soil. Soil ecoenzymatic stoichiometry can reflect the ability of soil microorganisms to acquire energy and nutrients, and drive nutrient cycling and carbon (C) decomposition in HM contaminated soil. Therefore, for the first time, we used the enzymatic stoichiometry modeling to examine the microbial nutrient limitation in rhizospheric and bulk soil of different plants (Medicago sativa, Halogeton arachnoideus and Agropyron cristatum) near the Baiyin Copper Mine. Results showed that the main pollutants in this area were Cu, Zn, Cd, and Pb, while Cd and Zn have the greatest contribution according to the analysis of pollution load index (PLI). The activities of soil C-, nitrogen (N)-, and phosphorus (P)-acquiring enzymes in the rhizosphere of plants were significantly greater than that in bulk soil. Moreover, microbial C and P limitations were observed in all plant treatments, while the lower limitation was generally in the rhizosphere compared to bulk soil. The HM stress significantly increased microbial C limitation and decreased microbial P limitation, especially in the rhizospheric soil. The partial least squares path modeling (PLS-PM) further indicated that HM concentration has the greatest effects on microbial P limitation (-0.64). In addition, the highest enzyme activities and the lowest P limitation were observed in the rhizospheric and bulk soil of M. sativa, thereby implying that soil microbial communities under the remediation of M. sativa were steadier and more efficient in terms of their metabolism. These findings are important for the elucidation of the nutrient cycling and microbial metabolism of rhizosphere under phytoremediation, and provide guidance for the restoration of HM-contaminated soil.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Microbial nutrient limitation in rhizosphere soils of different food crop families: Evidence from ecoenzymatic stoichiometry
    Wang, Xuelian
    Gong, Xiangwei
    Li, Xiangyu
    Sun, Sitong
    Dang, Ke
    Feng, Baili
    LAND DEGRADATION & DEVELOPMENT, 2023, 34 (04) : 1019 - 1034
  • [2] Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China
    Cui, Yongxing
    Fang, Linchuan
    Guo, Xiaobin
    Wang, Xia
    Zhang, Yanjiang
    Li, Pengfei
    Zhang, Xingchang
    SOIL BIOLOGY & BIOCHEMISTRY, 2018, 116 : 11 - 21
  • [3] Nitrogen addition aggravates microbial carbon limitation: Evidence from ecoenzymatic stoichiometry
    Chen, Hao
    Li, Dejun
    Zhao, Jie
    Zhang, Wei
    Xiao, Kongcao
    Wang, Kelin
    GEODERMA, 2018, 329 : 61 - 64
  • [4] A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: Evidence derived from microbial metabolic limitation
    Wang, Xia
    Cui, Yongxing
    Zhang, Xingchang
    Ju, Wenliang
    Duan, Chengjiao
    Wang, Yunqiang
    Fang, Linchuan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 738
  • [5] Heavy metal pollution increases soil microbial carbon limitation: Evidence from ecological enzyme stoichiometry
    Mingzhe Xu
    Yongxing Cui
    Jingzi Beiyuan
    Xia Wang
    Chengjiao Duan
    Linchuan Fang
    Soil Ecology Letters, 2021, 3 : 230 - 241
  • [6] Heavy metal pollution increases soil microbial carbon limitation: Evidence from ecological enzyme stoichiometry
    Xu, Mingzhe
    Cui, Yongxing
    Beiyuan, Jingzi
    Wang, Xia
    Duan, Chengjiao
    Fang, Linchuan
    SOIL ECOLOGY LETTERS, 2021, 3 (03) : 230 - 241
  • [7] Fertilization and cultivation management alleviate microbial nitrogen limitation in purple soil sloping farmland: Evidence from ecoenzymatic stoichiometry
    Khan, Asif
    Li, Tianyang
    He, Binghui
    Song, Jianhong
    ECOLOGICAL ENGINEERING, 2024, 207
  • [8] Ecoenzymatic stoichiometry and microbial nutrient limitation of shrub rhizosphere soils in response to arbuscular mycorrhizal fungi inoculation
    Liu, Tingyan
    Hao, Longfei
    Bai, Shulan
    Wang, Yanlin
    JOURNAL OF SOILS AND SEDIMENTS, 2022, 22 (02) : 594 - 606
  • [9] Ecoenzymatic stoichiometry and microbial nutrient limitation of shrub rhizosphere soils in response to arbuscular mycorrhizal fungi inoculation
    Tingyan Liu
    Longfei Hao
    Shulan Bai
    Yanlin Wang
    Journal of Soils and Sediments, 2022, 22 : 594 - 606
  • [10] Excessive climate warming exacerbates nitrogen limitation on microbial metabolism in an alpine meadow of the Tibetan Plateau: Evidence from soil ecoenzymatic stoichiometry
    Cai, Mengke
    Zhang, Yangjian
    Zhao, Guang
    Zhao, Bo
    Cong, Nan
    Zhu, Juntao
    Zheng, Zhoutao
    Wu, Wenjuan
    Duan, Xiaoqing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 930