High-throughput proteomics: a methodological mini-review

被引:186
作者
Cui, Miao [1 ,2 ]
Cheng, Chao [3 ,4 ,5 ]
Zhang, Lanjing [6 ,7 ,8 ,9 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Pathol, New York, NY USA
[2] Mt Sinai West, Dept Pathol, New York, NY USA
[3] Baylor Coll Med, Dept Med, Sect Epidemiol & Populat Sci, Houston, TX 77030 USA
[4] Baylor Coll Med, Dept Med, Houston, TX 77030 USA
[5] Baylor Coll Med, Dan L Duncan Comprehens Canc Ctr, Houston, TX 77030 USA
[6] Rutgers State Univ, Dept Biol Sci, Newark, NJ 07102 USA
[7] Med Ctr Princeton, Dept Pathol, Plainsboro, NJ 08536 USA
[8] Rutgers Canc Inst New Jersey, New Brunswick, NJ 08901 USA
[9] Rutgers State Univ, Ernest Mario Sch Pharm, Dept Chem Biol, Piscataway, NJ 07102 USA
基金
美国国家科学基金会;
关键词
SET ENRICHMENT ANALYSIS; MASS-SPECTROMETRY; PROTEIN-DETECTION; EXPRESSION; VISUALIZATION; BIOMARKERS; LIGATION; ASSAY;
D O I
10.1038/s41374-022-00830-7
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Proteomics plays a vital role in biomedical research in the post-genomic era. With the technological revolution and emerging computational and statistic models, proteomic methodology has evolved rapidly in the past decade and shed light on solving complicated biomedical problems. Here, we summarize scientific research and clinical practice of existing and emerging high-throughput proteomics approaches, including mass spectrometry, protein pathway array, next-generation tissue microarrays, single-cell proteomics, single-molecule proteomics, Luminex, Simoa and Olink Proteomics. We also discuss important computational methods and statistical algorithms that can maximize the mining of proteomic data with clinical and/or other 'omics data. Various principles and precautions are provided for better utilization of these tools. In summary, the advances in high-throughput proteomics will not only help better understand the molecular mechanisms of pathogenesis, but also to identify the signature signaling networks of specific diseases. Thus, modern proteomics have a range of potential applications in basic research, prognostic oncology, precision medicine, and drug discovery. Proteomics plays a vital role in biomedical research in the post-genomic era. With the technological revolution and emerging computational tools, proteomic methodology has evolved rapidly in the past decade and shed light on solving complicated biomedical problems. Thus, this mini-review summarizes existing and emerging high-throughput proteomics methodologies, including mass spectrometry, protein pathway array, next-generation tissue microarrays, single-cell proteomics, single-molecule proteomics, Luminex, Simoa and OLINK Proteomics.
引用
收藏
页码:1170 / 1181
页数:12
相关论文
共 116 条
[1]  
[Anonymous], 2014, J PROTEOM BIOINFORM, DOI DOI 10.4172/JPB.1000301
[2]   Proteomics: Technologies and Their Applications [J].
Aslam, Bilal ;
Basit, Madiha ;
Nisar, Muhammad Atif ;
Khurshid, Mohsin ;
Rasool, Muhammad Hidayat .
JOURNAL OF CHROMATOGRAPHIC SCIENCE, 2017, 55 (02) :182-196
[3]   Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability [J].
Assarsson, Erika ;
Lundberg, Martin ;
Holmquist, Goeran ;
Bjoerkesten, Johan ;
Thorsen, Stine Bucht ;
Ekman, Daniel ;
Eriksson, Anna ;
Dickens, Emma Rennel ;
Ohlsson, Sandra ;
Edfeldt, Gabriella ;
Andersson, Ann-Catrin ;
Lindstedt, Patrik ;
Stenvang, Jan ;
Gullberg, Mats ;
Fredriksson, Simon .
PLOS ONE, 2014, 9 (04)
[4]   Digital pathology and artificial intelligence in translational medicine and clinical practice [J].
Baxi, Vipul ;
Edwards, Robin ;
Montalto, Michael ;
Saha, Saurabh .
MODERN PATHOLOGY, 2022, 35 (01) :23-32
[5]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[6]   Complementarity of SOMAscan to LC-MS/MS and RNA-seq for quantitative profiling of human embryonic and mesenchymal stem cells [J].
Billing, Anja M. ;
Ben Hamidane, Hisham ;
Bhagwat, Aditya M. ;
Cotton, Richard J. ;
Dib, Shaima S. ;
Kumar, Pankaj ;
Hayat, Shahina ;
Goswami, Neha ;
Suhre, Karsten ;
Rafii, Arash ;
Graumann, Johannes .
JOURNAL OF PROTEOMICS, 2017, 150 :86-97
[7]   Computational quality control tools for mass spectrometry proteomics [J].
Bittremieux, Wout ;
Valkenborg, Dirk ;
Martens, Lennart ;
Laukens, Kris .
PROTEOMICS, 2017, 17 (3-4)
[8]   Toward single-molecule proteomics [J].
Boskovic, Filip ;
Keyser, Ulrich F. .
SCIENCE, 2021, 374 (6574) :1443-1444
[9]   Multiple rereads of single proteins at single-amino acid resolution using nanopores [J].
Brinkerhoff, Henry ;
Kang, Albert S. W. ;
Liu, Jingqian ;
Aksimentiev, Aleksei ;
Dekker, Cees .
SCIENCE, 2021, 374 (6574) :1509-+
[10]   Multidimensional Proteomics Analysis of Amniotic Fluid to Provide Insight into the Mechanisms of Idiopathic Preterm Birth [J].
Buhimschi, Irina A. ;
Zhao, Guomao ;
Rosenberg, Victor A. ;
Abdel-Razeq, Sonya ;
Thung, Stephen ;
Buhimschi, Catalin S. .
PLOS ONE, 2008, 3 (04)