Survival Comes at a Cost: A Coevolution of Phage and Its Host Leads to Phage Resistance and Antibiotic Sensitivity of Pseudomonas aeruginosa Multidrug Resistant Strains

被引:21
作者
Valappil, Sarshad Koderi [1 ]
Shetty, Prateek [2 ,3 ]
Deim, Zoltan [1 ]
Terhes, Gabriella [4 ]
Urban, Edit [4 ]
Vaczi, Sandor [5 ]
Patai, Roland [6 ]
Polgar, Tamas [6 ,7 ]
Pertics, Botond Zsombor [8 ]
Schneider, Gyoergy [8 ]
Kovacs, Tamas [9 ,10 ]
Rakhely, Gabor [1 ,6 ]
机构
[1] Univ Szeged, Dept Biotechnol, Szeged, Hungary
[2] Inst Plant Biol, Biol Res Ctr, Szeged, Hungary
[3] Univ Szeged, Doctoral Sch Biol, Szeged, Hungary
[4] Univ Szeged, Dept Clin Microbiol, Szeged, Hungary
[5] Univ Szeged, Dept Pathophysiol, Fac Med, Szeged, Hungary
[6] Inst Biophys, Biol Res Ctr, Szeged, Hungary
[7] Univ Szeged, Doctoral Sch Theoret Med, Szeged, Hungary
[8] Univ Pecs, Dept Med Microbiol & Immunol, Pecs, Hungary
[9] Enviroinvest Corp, Nanophagetherapy Ctr, Dept Biotechnol, Pecs, Hungary
[10] Biopesticide Ltd, Pecs, Hungary
关键词
bacteriophage therapy; combined treatment; phage resistance; phage-provoked sequential genomic mutation; deletion; MexXY-OprM efflux system; AMINOGLYCOSIDE RESISTANCE; ANTIMICROBIAL RESISTANCE; INTRINSIC RESISTANCE; EFFLUX; BACTERIOPHAGE; MUTATIONS; MECHANISMS; ADSORPTION; EVOLUTION; THERAPY;
D O I
10.3389/fmicb.2021.783722
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The increasing ineffectiveness of traditional antibiotics and the rise of multidrug resistant (MDR) bacteria have necessitated the revival of bacteriophage (phage) therapy. However, bacteria might also evolve resistance against phages. Phages and their bacterial hosts coexist in nature, resulting in a continuous coevolutionary competition for survival. We have isolated several clinical strains of Pseudomonas aeruginosa and phages that infect them. Among these, the PIAS (Phage Induced Antibiotic Sensitivity) phage belonging to the Myoviridae family can induce multistep genomic deletion in drug-resistant clinical strains of P. aeruginosa, producing a compromised drug efflux system in the bacterial host. We identified two types of mutant lines in the process: green mutants with SNPs (single nucleotide polymorphisms) and smaller deletions and brown mutants with large (similar to 250 kbp) genomic deletion. We demonstrated that PIAS used the MexXY-OprM system to initiate the infection. P. aeruginosa clogged PIAS phage infection by either modifying or deleting these receptors. The green mutant gaining phage resistance by SNPs could be overcome by evolved PIASs (E-PIASs) with a mutation in its tail-fiber protein. Characterization of the mutant phages will provide a deeper understanding of phage-host interaction. The coevolutionary process continued with large deletions in the same regions of the bacterial genomes to block the (E-)PIAS infection. These mutants gained phage resistance via either complete loss or substantial modifications of the phage receptor, MexXY-OprM, negating its essential role in antibiotic resistance. In vitro and in vivo studies indicated that combined use of PIAS and antibiotics could effectively inhibit P. aeruginosa growth. The phage can either eradicate bacteria or induce antibiotic sensitivity in MDR-resistant clinical strains. We have explored the potential use of combination therapy as an alternative approach against MDR P. aeruginosa infection.
引用
收藏
页数:17
相关论文
共 86 条
  • [1] Emergence of Multidrug- and Pandrug- Resistant Pseudomonas aeruginosa from Five Hospitals in Qatar
    Ahmed, M. A. Sid
    Hassan, A. A. I.
    Abu Jarir, S.
    Hadi, H. Abdel
    Bansal, D.
    Wahab, A. Abdul
    Muneer, M.
    Mohamed, S. F.
    Zahraldin, K.
    Hamid, J. M.
    Alyazidi, M. A.
    Mohamed, M.
    Sultan, A. A.
    Soderquist, B.
    Ibrahim, E. B.
    Jass, J.
    [J]. INFECTION PREVENTION IN PRACTICE, 2019, 1 (3-4)
  • [2] BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons
    Alikhan, Nabil-Fareed
    Petty, Nicola K.
    Ben Zakour, Nouri L.
    Beatson, Scott A.
    [J]. BMC GENOMICS, 2011, 12
  • [3] Genetic Determinants Involved in the Susceptibility of Pseudomonas aeruginosa to β-Lactam Antibiotics
    Alvarez-Ortega, Carolina
    Wiegand, Irith
    Olivares, Jorge
    Hancock, Robert E. W.
    Luis Martinez, Jose
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2010, 54 (10) : 4159 - 4167
  • [4] Assessing phage therapy against Pseudomonas aeruginosa using a Galleria mellonella infection model
    Beeton, M. L.
    Alves, D. R.
    Enright, M. C.
    Jenkins, A. T. A.
    [J]. INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2015, 46 (02) : 196 - 200
  • [5] Blocking Peptidoglycan Recycling in Pseudomonas aeruginosa Attenuates Intrinsic Resistance to Fosfomycin
    Borisova, Marina
    Gisin, Jonathan
    Mayer, Christoph
    [J]. MICROBIAL DRUG RESISTANCE, 2014, 20 (03) : 231 - 237
  • [6] Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance
    Burmeister, Alita R.
    Fortier, Abigail
    Roush, Carli
    Lessing, Adam J.
    Bender, Rose G.
    Barahman, Roxanna
    Grant, Raeven
    Chan, Benjamin K.
    Turner, Paul E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (21) : 11207 - 11216
  • [7] Deciphering β-lactamase-independent p-lactam resistance evolution trajectories in Pseudomonas aeruginosa
    Cabot, Gabriel
    Florit-Mendoza, Llorenc
    Sanchez-Diener, Irina
    Zamorano, Laura
    Oliver, Antonio
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2018, 73 (12) : 3322 - 3331
  • [8] Evolution of Pseudomonas aeruginosa Antimicrobial Resistance and Fitness under Low and High Mutation Rates
    Cabot, Gabriel
    Zamorano, Laura
    Moya, Bartolome
    Juan, Carlos
    Navas, Alfonso
    Blazquez, Jesus
    Oliver, Antonio
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2016, 60 (03) : 1767 - 1778
  • [9] Phage therapy against Pseudomonas aeruginosa infections in a cystic fibrosis zebrafish model
    Cafora, Marco
    Deflorian, Gianluca
    Forti, Francesca
    Ferrari, Laura
    Binelli, Giorgio
    Briani, Federica
    Ghisotti, Daniela
    Pistocchi, Anna
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] The Glycerol-3-Phosphate Permease GlpT Is the Only Fosfomycin Transporter in Pseudomonas aeruginosa
    Castaneda-Garcia, Alfredo
    Rodriguez-Rojas, Alexandro
    Guelfo, Javier R.
    Blazquez, Jesus
    [J]. JOURNAL OF BACTERIOLOGY, 2009, 191 (22) : 6968 - 6974