Solutions of PT-symmetric tight-binding chain and its equivalent Hermitian counterpart

被引:152
作者
Jin, L. [1 ]
Song, Z. [1 ]
机构
[1] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 05期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
eigenvalues and eigenfunctions; P invariance; quantum theory; T invariance; tight-binding calculations; QUANTUM; HAMILTONIANS;
D O I
10.1103/PhysRevA.80.052107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the non-Hermitian quantum mechanics for the discrete system. This paper gives an exact analytic single-particle solution for an N-site tight-binding chain with two conjugated imaginary potentials +/- i gamma at two end sites, which Hamiltonian has parity-time symmetry (PT symmetry). Based on the Bethe ansatz results, it is found that, in single-particle subspace, this model is comprised of two phases: an unbroken symmetry phase with a purely real energy spectrum in the region gamma <gamma(c) and a spontaneously broken symmetry phase with N-2 real and two imaginary eigenvalues in the region gamma >gamma(c). The behaviors of eigenfunctions and eigenvalues in the vicinity of gamma(c) are investigated. It is shown that the boundary of two phases possesses the characteristics of exceptional point. We also construct the equivalent Hermitian Hamiltonian of the present model in the framework of metric-operator theory. We find out that the equivalent Hermitian Hamiltonian can be written as another bipartite lattice model with real long-range hoppings.
引用
收藏
页数:7
相关论文
共 27 条
  • [1] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [2] No-ghost theorem for the fourth-order derivative pais-uhlenbeck oscillator model
    Bender, Carl M.
    Mannheim, Philip D.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (11)
  • [3] Complex extension of quantum mechanics
    Bender, CM
    Brody, DC
    Jones, HF
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (27)
  • [4] Real spectra in non-Hermitian Hamiltonians having PT symmetry
    Bender, CM
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5243 - 5246
  • [5] PT-symmetric quantum mechanics
    Bender, CM
    Boettcher, S
    Meisinger, PN
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2201 - 2229
  • [6] Supersymmetry and the spontaneous breakdown of PT symmetry
    Dorey, P
    Dunning, C
    Tateo, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (28): : L391 - L400
  • [7] Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics
    Dorey, P
    Dunning, C
    Tateo, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (28): : 5679 - 5704
  • [8] A non-Hermitian PT symmetric Bose-Hubbard model:: eigenvalue rings from unfolding higher-order exceptional points
    Graefe, E. M.
    Guenther, U.
    Korsch, H. J.
    Niederle, A. E.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (25)
  • [9] PHASE-TRANSITIONS OF FINITE FERMI SYSTEMS AND QUANTUM CHAOS
    HEISS, WD
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 242 (4-6): : 443 - 451
  • [10] Exceptional points of non-Hermitian operators
    Heiss, WD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06): : 2455 - 2464