Fully CMOS-compatible titanium nitride nanoantennas

被引:92
作者
Briggs, Justin A. [1 ,2 ]
Naik, Gururaj V. [2 ]
Petach, Trevor A. [3 ]
Baum, Brian K. [2 ]
Goldhaber-Gordon, David [3 ]
Dionne, Jennifer A. [2 ]
机构
[1] Stanford Univ, Dept Appl Phys, 348 Via Pueblo Mall, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, 496 Lomita Mall, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA
关键词
ATOMIC LAYER DEPOSITION; SITU SPECTROSCOPIC ELLIPSOMETRY; ALTERNATIVE PLASMONIC MATERIALS; REFRACTORY PLASMONICS; THIN-FILMS; METAMATERIALS; METAL; NANOPARTICLES; GROWTH; ENERGY;
D O I
10.1063/1.4941413
中图分类号
O59 [应用物理学];
学科分类号
摘要
CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]   Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [J].
Bagheri, Shahin ;
Zgrabik, Christine M. ;
Gissibl, Timo ;
Tittl, Andreas ;
Sterl, Florian ;
Walter, Ramon ;
De Zuani, Stefano ;
Berrier, Audrey ;
Stauden, Thomas ;
Richter, Gunther ;
Hu, Evelyn L. ;
Giessen, Harald .
OPTICAL MATERIALS EXPRESS, 2015, 5 (11) :2625-2633
[3]   A review of the optical properties of alloys and intermetallics for plasmonics [J].
Blaber, M. G. ;
Arnold, M. D. ;
Ford, M. J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (14)
[4]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[5]   Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer [J].
Challener, W. A. ;
Peng, Chubing ;
Itagi, A. V. ;
Karns, D. ;
Peng, Wei ;
Peng, Yingguo ;
Yang, XiaoMin ;
Zhu, Xiaobin ;
Gokemeijer, N. J. ;
Hsia, Y. -T. ;
Ju, G. ;
Rottmayer, Robert E. ;
Seigler, Michael A. ;
Gage, E. C. .
NATURE PHOTONICS, 2009, 3 (04) :220-224
[6]  
Christopher P, 2012, NAT MATER, V11, P1044, DOI [10.1038/nmat3454, 10.1038/NMAT3454]
[7]  
Dressel M., 2002, Electrodynamics of solids: optical properties of electrons in matter
[8]   Investigations of titanium nitride as metal gate material, elaborated by metal organic atomic layer deposition using TDMAT and NH3 [J].
Fillot, F ;
Morel, T ;
Minoret, S ;
Matko, I ;
Maîtrejean, S ;
Guillaumot, B ;
Chenevier, B ;
Billon, T .
MICROELECTRONIC ENGINEERING, 2005, 82 (3-4) :248-253
[9]   Refractory Plasmonics [J].
Guler, Urcan ;
Boltasseva, Alexandra ;
Shalaev, Vladimir M. .
SCIENCE, 2014, 344 (6181) :263-264
[10]   Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles [J].
Guler, Urcan ;
Ndukaife, Justus C. ;
Naik, Gururaj V. ;
Nnanna, A. G. Agwu ;
Kildishev, Alexander V. ;
Shalaev, Vladimir M. ;
Boltasseva, Alexandra .
NANO LETTERS, 2013, 13 (12) :6078-6083