Improving Optical Flow Inference for Video Colorization

被引:1
作者
Huang, Rulin [1 ]
Li, Shaohui [1 ]
Dai, Wenrui [1 ]
Li, Chenglin [1 ]
Zou, Junni [1 ]
Xiong, Hongkai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22) | 2022年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ISCAS48785.2022.9937932
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent video colorization methods optimize correspondence estimation and information propagation in an end-to-end manner. However, they usually suffer from loss of fidelity due to the inaccurate inference of correspondence measurement. In this paper, we propose a post-training optimization (PTO) strategy to refine correspondence measurement in the end-to-end optimized framework. The proposed PTO strategy introduces a pseudo loss function to well approximate the target loss and guide the direction of updates. We further develop a video colorization method that incorporates PTO and optical flow to guarantee high-fidelity colorized frames in theory. Experimental results demonstrate that the proposed method achieves state-of-the-art PSNR performance in video colorization on the DAVIS dataset and common test sequences for video coding. Furthermore, the proposed method can be employed into video compression and achieves competitive rate-distortion performance with the recent High Efficiency Video Coding (HEVC) standard.
引用
收藏
页码:3185 / 3189
页数:5
相关论文
共 40 条
[1]  
Akimoto N., 2020, ARXIV201112528
[2]  
Bossen F., 2013, JCTVCL1100
[3]  
Campos J., 2019, 2019 IEEE CVF C COMP
[4]   The Animation Transformer: Visual Correspondence via Segment Matching [J].
Casey, Evan ;
Perez, Victor ;
Li, Zhuoru .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :11303-11312
[5]   Deep Colorization [J].
Cheng, Zezhou ;
Yang, Qingxiong ;
Sheng, Bin .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :415-423
[6]   Learning Diverse Image Colorization [J].
Deshpande, Aditya ;
Lu, Jiajun ;
Yeh, Mao-Chuang ;
Chong, Min Jin ;
Forsyth, David .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2877-2885
[7]   Learning Large-Scale Automatic Image Colorization [J].
Deshpande, Aditya ;
Rock, Jason ;
Forsyth, David .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :567-575
[8]   A Superpixel-Based Variational Model for Image Colorization [J].
Fang, Faming ;
Wang, Tingting ;
Zeng, Tieyong ;
Zhang, Guixu .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (10) :2931-2943
[9]   Deep Exemplar-based Colorization [J].
He, Mingming ;
Chen, Dongdong ;
Liao, Jing ;
Sander, Pedro, V ;
Yuan, Lu .
ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (04)
[10]   DeepRemaster: Temporal Source-Reference Attention Networks for Comprehensive Video Enhancement [J].
Iizuka, Satoshi ;
Simo-Serra, Edgar .
ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (06)