Sasakian 3-Metric as a Generalized Ricci-Yamabe soliton

被引:5
作者
Dey, Dibakar [1 ]
Majhi, Pradip [1 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35 Ballygunge Circular Rd, Kolkata 700019, W Bengal, India
关键词
Sasakian manifold; Quasi-Yamabe soliton; Ricci-Yamabe soliton; generalized Ricci-Yamabe soliton; infinitesimal contact transformation; Hodge-de Rham potential;
D O I
10.2989/16073606.2021.1882604
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we first investigate a Sasakian 3-metric as a quasi-Yamabe gradient soliton. In the sequel, extending the notions of quasi-Yamabe soliton and Ricci-Yamabe soliton, the notion of generalized Ricci-Yamabe soliton is introduced. It is shown that if (g, V, lambda, alpha, beta, gamma) is a generalized gradient Ricci-Yamabe soliton on a complete Sasakian 3-manifold M with potential function f , then M is compact Einstein and locally isometric to a unit sphere. Moreover, the potential vector field V is an infinitesimal contact transformation and pointwise collinear with the characteristic vector field xi. Further, if h is the Hodge-de Rham potential for V, then, upto a constant, f = h.
引用
收藏
页码:409 / 421
页数:13
相关论文
共 18 条
[1]   The nature of spacetime in bigravity: Two metrics or none? [J].
Akrami, Yashar ;
Koivisto, Tomi S. ;
Solomon, Adam R. .
GENERAL RELATIVITY AND GRAVITATION, 2015, 47 (01)
[2]   Some Applications of the Hodge-de Rham Decomposition to Ricci Solitons [J].
Aquino, C. ;
Barros, A. ;
Ribeiro, E., Jr. .
RESULTS IN MATHEMATICS, 2011, 60 (1-4) :245-254
[3]   A Rosen-type bi-metric universe and its physical properties [J].
Boskoff, Wladimir G. ;
Crasmareanu, Mircea .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (10)
[4]   On Eta-Einstein Sasakian geometry [J].
Boyer, CP ;
Galicki, K ;
Matzeu, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :177-208
[5]   On Sasakian-Einstein geometry [J].
Boyer, CP ;
Galicki, K .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (07) :873-909
[6]  
CANDELAS P, 1995, NUCL PHYS B, V258
[7]   Yamabe and Quasi-Yamabe Solitons on Euclidean Submanifolds [J].
Chen, Bang-Yen ;
Deshmukh, Sharief .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (05)
[8]  
Dey, 2020, ARXIV200502322V1MATH
[9]  
GHOSH A, 2020, MATH, V70
[10]   Sasakian metric as a Ricci soliton and related results [J].
Ghosh, Amalendu ;
Sharma, Ramesh .
JOURNAL OF GEOMETRY AND PHYSICS, 2014, 75 :1-6