NULL CONTROLLABILITY WITH CONSTRAINTS ON THE STATE FOR THE 1-D KURAMOTO-SIVASHINSKY EQUATION

被引:11
作者
Gao, Peng [1 ,2 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] NE Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
来源
EVOLUTION EQUATIONS AND CONTROL THEORY | 2015年 / 4卷 / 03期
关键词
Null controllability; 1-D Kuramoto-Sivashinsky equation; constraints on the state; INSENSITIZING CONTROLS; INERTIAL MANIFOLDS; WAVES; INSTABILITY; STABILITY;
D O I
10.3934/eect.2015.4.281
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is addressed to study the null controllability with constraints on the state for the Kuramoto-Sivashinsky equation. We first consider the linearized problem. Then, by Kakutani fixed point theorem, we show that the same result holds for the Kuramoto-Sivashinsky equation.
引用
收藏
页码:281 / 296
页数:16
相关论文
共 50 条
  • [31] Instability of traveling waves of the Kuramoto-Sivashinsky equation
    Strauss, W
    Wang, GX
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (02) : 267 - 276
  • [32] On the Classical Solutions for the Kuramoto-Sivashinsky Equation with Ehrilch-Schwoebel Effects
    Coclite, Giuseppe Maria
    Di Ruvo, Lorenzo
    CONTEMPORARY MATHEMATICS, 2022, 3 (04): : 386 - 431
  • [33] Optimal Boundary Control of Kuramoto-Sivashinsky Equation
    Dubljevic, Stevan
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 141 - 147
  • [34] INSTABILITY OF TRAVELING WAVES OF THE KURAMOTO-SIVASHINSKY EQUATION
    W.STRAUSS
    WANG GUANXIANG
    ChineseAnnalsofMathematics, 2002, (02) : 267 - 276
  • [35] Fixed points of a destabilized Kuramoto-Sivashinsky equation
    Bartha, Ferenc A.
    Tucker, Warwick
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 339 - 349
  • [36] Global Existence and Analyticity for the 2D Kuramoto-Sivashinsky Equation
    Ambrose, David M.
    Mazzucato, Anna L.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1525 - 1547
  • [37] Comparison of sequential data assimilation methods for the Kuramoto-Sivashinsky equation
    Jardak, M.
    Navon, I. M.
    Zupanski, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 62 (04) : 374 - 402
  • [38] Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control
    Guzman, Patricio
    Marx, Swann
    Cerpa, Eduardo
    IFAC PAPERSONLINE, 2019, 52 (02): : 70 - 75
  • [39] ABOUT CLASSICAL SOLUTIONS FOR HIGH ORDER CONSERVED KURAMOTO-SIVASHINSKY TYPE EQUATION
    Coclite, Giuseppe Maria
    Di Ruvo, Lorenzo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (12): : 4793 - 4820
  • [40] A new global Carleman estimate for the one-dimensional Kuramoto-Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem
    Gao, Peng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 117 : 133 - 147