Complex optimization of arc melting synthesis for bulk Cr2AlC MAX-phase

被引:20
作者
Sobolev, Kirill [1 ]
Pazniak, Anna [2 ]
Shylenko, Oleg [3 ]
Komanicky, Vladimir [3 ]
Provino, Alessia [4 ,5 ]
Manfrinetti, Pietro [4 ,5 ]
Peddis, Davide [4 ]
Rodionova, Valeria [1 ]
机构
[1] Immanuel Kant Baltic Fed Univ, Alexandra Nevskogo St 14, Kaliningrad 236041, Russia
[2] Inst PPRIME, Dept Phys & Mecan Mat, Bd Marie & Pierre Curie 11, F-86962 Poitiers, France
[3] Pavol Jozef Safarik Univ, Fac Sci, Inst Phys, Pk Angelinum 9, Kosice 04001, Slovakia
[4] Univ Genoa, Dept Chem, Via Dodecaneso 31, I-16146 Genoa, Italy
[5] Inst SPIN CNR, Corso Perrone 24, I-16152 Genoa, Italy
关键词
MAX-Phases; Cr2AlC; Arc melting; Phase quality;
D O I
10.1016/j.ceramint.2020.11.119
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A complex optimization of the arc melting synthetic approach was performed to enhance the phase purity of Cr2AlC MAX-phase in the bulk form. Optimization steps included the initial ratio of 2Cr: xAl: 1C, variation through a change in Al content (i.e. x ranging from 1 to 1.5), tuning duration of the post-annealing thermal treatment and adjustment of the melting chamber pressure. The use of Cr3C2 as a precursor in place of Cr and C mixture has also been tried. It was found that Cr2AlC MAX-phase forms as the predominant phase when a stoichiometric ratio 2Cr: 1.3Al: 1C is used. By keeping this stoichiometry constant, the melting chamber pressure was then adjusted to further improve the phase purity of the samples. It has been established that the use of Cr3C2 is not an appropriate way to improve sample purity and promote homogeneity in the carbon distribution. The establishment of an optimized arc fusion protocol for parental Cr2AlC is a necessity for further successful mass synthesis of the substituted (Cr1-xMnx)(2)AlC MAX-phase.
引用
收藏
页码:7745 / 7752
页数:8
相关论文
共 23 条
[1]  
Abu Mohamad Johari, 2012, ISRN Ceramics, DOI 10.5402/2012/341285
[2]   The MN+1AXN phases:: A new class of solids;: Thermodynamically stable nanolaminates [J].
Barsoum, MW .
PROGRESS IN SOLID STATE CHEMISTRY, 2000, 28 (1-4) :201-281
[3]  
Caspi E.N, MATER RES LETT, V3
[4]   Magnetic nanoscale laminates with tunable exchange coupling from first principles [J].
Dahlqvist, M. ;
Alling, B. ;
Abrikosov, I. A. ;
Rosen, J. .
PHYSICAL REVIEW B, 2011, 84 (22)
[5]   Non-conventional synthesis and magnetic properties of MAX phases (Cr/Mn)2AlC and (Cr/Fe)2AlC [J].
Hamm, Christin M. ;
Bocarsly, Joshua D. ;
Seward, Gareth ;
Kramm, Ulrike I. ;
Birkel, Christina S. .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (23) :5700-5708
[6]   Magnetic MAX phases from theory and experiments; a review [J].
Ingason, A. S. ;
Dahlqvist, M. ;
Rosen, J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (43)
[7]   A Nanolaminated Magnetic Phase: Mn2GaC [J].
Ingason, A. S. ;
Petruhins, A. ;
Dahlqvist, M. ;
Magnus, F. ;
Mockute, A. ;
Alling, B. ;
Hultman, L. ;
Abrikosov, I. A. ;
Persson, P. O. A. ;
Rosen, J. .
MATERIALS RESEARCH LETTERS, 2014, 2 (02) :89-93
[8]   KOHLENSTOFFHALTIGE TERNARE VERBINDUNGEN (H-PHASE) [J].
JEITSCHKO, W ;
NOWOTNY, H ;
BENESOVSKY, F .
MONATSHEFTE FUR CHEMIE, 1963, 94 (04) :672-&
[9]   Synthesis and mechanical and thermal properties of (Cr,Mn)2AlC solid solutions [J].
Li, Haolin ;
Li, Shibo ;
Mao, Huan ;
Zhou, Yang .
ADVANCES IN APPLIED CERAMICS, 2017, 116 (03) :165-172
[10]   Magnetic and electrical/thermal transport properties of Mn-doped Mn+1AXn phase compounds Cr2-xMnxGaC (0 ≤ x ≤ 1) [J].
Lin, S. ;
Tong, P. ;
Wang, B. S. ;
Huang, Y. N. ;
Lu, W. J. ;
Shao, D. F. ;
Zhao, B. C. ;
Song, W. H. ;
Sun, Y. P. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (05)