Quantum mechanics of a constrained particle and the problem of prescribed geometry-induced potential

被引:31
作者
da Silva, Luiz C. B. [1 ]
Bastos, Cristiano C. [2 ]
Ribeiro, Fabio G. [3 ]
机构
[1] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
[2] Univ Fed Rural Pernambuco, Dept Quim, BR-52191900 Recife, PE, Brazil
[3] Inst Fed Educ Ciencia & Tecnol Paraiba Campus Pic, Lab Fis, BR-58187000 Picui, Paraiba, Brazil
关键词
Constrained dynamics; Prescribed curvature; Invariant surfaces; Surfaces of revolution; Helicoidal surfaces; Bound states; POINT PARTICLE; BOUND-STATES; CURVATURE; SURFACES; MOTION;
D O I
10.1016/j.aop.2017.02.012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The experimental techniques have evolved to a stage where various examples of nanostructures with non-trivial shapes have been synthesized, turning the dynamics of a constrained particle and the link with geometry into a realistic and important topic of research. Some decades ago, a formalism to deduce a meaningful Hamiltonian for the confinement was devised, showing that a geometry-induced potential (GIP) acts upon the dynamics. In this work we study the problem of prescribed GIP for curves and surfaces in Euclidean space R-3, i.e., how to find a curved region with a potential given a priori. The problem for curves is easily solved by integrating Frenet equations, while the problem for surfaces involves a non-linear 2nd order partial differential equation (PDE). Here, we explore the GIP for surfaces invariant by a 1-parameter group of isometries of R-3, which turns the PDE into an ordinary differential equation (ODE) and leads to cylindrical, revolution, and helicoidal surfaces. Helicoidal surfaces are particularly important, since they are natural candidates to establish a link between chirality and the GIP. Finally, for the family of helicoidal minimal surfaces, we prove the existence of geometry-induced bound and localized states and the possibility of controlling the change in the distribution of the probability density when the surface is subjected to an extra charge. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 33
页数:21
相关论文
共 51 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[3]  
[Anonymous], REV MAT U
[4]  
[Anonymous], 1976, Differential Geometry of Curves and Surfaces
[5]  
[Anonymous], 2001, MONGE AMPERE EQUATIO
[6]   Why nanotubes grow chiral [J].
Artyukhov, Vasilii I. ;
Penev, Evgeni S. ;
Yakobson, Boris I. .
NATURE COMMUNICATIONS, 2014, 5
[7]   Curvature induced quantum potential on deformed surfaces [J].
Atanasov, Victor ;
Dandoloff, Rossen .
PHYSICS LETTERS A, 2007, 371 (1-2) :118-123
[8]   Helicoidal graphene nanoribbons: Chiraltronics [J].
Atanasov, Victor ;
Saxena, Avadh .
PHYSICAL REVIEW B, 2015, 92 (03)
[9]   Geometry-induced charge separation on a helicoidal ribbon [J].
Atanasov, Victor ;
Dandoloff, Rossen ;
Saxena, Avadh .
PHYSICAL REVIEW B, 2009, 79 (03)
[10]  
Baikoussis C., 1998, J. Geom, V63, P25, DOI [10.1007/BF01221235, DOI 10.1007/BF01221235]