Nanoindentation investigation on creep behavior of amorphous Cu-Zr-AI/nano crystalline Cu nanolaminates

被引:27
作者
Ma, Y. [1 ]
Peng, G. J. [1 ]
Feng, Y. H. [2 ]
Zhang, T. H. [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mech Engn, Inst Micro Nanomech Testing Technol & Applicat, Hangzhou 310014, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanolaminates; Amorphous alloy; Nanoindentation; Creep; Strain rate sensitivity; SHEAR TRANSFORMATION ZONE; STRAIN-RATE SENSITIVITY; METALLIC GLASSY FILMS; MECHANICAL-BEHAVIOR; NANOCRYSTALLINE CU; TENSILE DUCTILITY; PLASTIC-FLOW; DEFORMATION; STRENGTH; MULTILAYERS;
D O I
10.1016/j.jnoncrysol.2017.03.037
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Berkovich nanoindentation experiments have been performed on amorphous /nanocrystalline nanolaminates with individual Cu-Zr-Al layers (45 nm, 90 nm, 225 nm) and Cu layers (7.5 nm & 15 nm). Elastic modulus, hardness and indentation morphology were detected and compared to those of single Cu-Zr-Al thin film. Creep deformation was systematically investigated at various holding depths and loading rates. For the sample with thinner amorphous layer, a more pronounced creep deformation was observed and it was confirmed to be due to the size effect of Cu-Zr-Al layers and the addition of Cu layers. The creep deformation was identified to be history-independent through applying various loading rates. The strain rate sensitivities were calculated from the steady-state creep and a sharp enlargement appeared as the amorphous layer reduced down to 90 nm, implying a transition of creep mechanism in nanolaminates. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 38 条
  • [1] On the strain rate sensitivity of plastic flow in metallic glasses
    Bhattacharyya, Abir
    Singh, Gaurav
    Prasad, K. Eswar
    Narasimhan, R.
    Ramamurty, U.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 625 : 245 - 251
  • [2] Choi I.C., 2012, NANO, V5, P7
  • [3] Cui Y. W., 2016, SCI REP, P6
  • [4] Tensile ductility and necking of metallic glass
    Guo, H.
    Yan, P. F.
    Wang, Y. B.
    Tan, J.
    Zhang, Z. F.
    Sui, M. L.
    Ma, E.
    [J]. NATURE MATERIALS, 2007, 6 (10) : 735 - 739
  • [5] Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates
    Guo, Wei
    Jaegle, Eric
    Yao, Jiahao
    Maier, Verena
    Korte-Kerzel, Sandra
    Schneider, Jochen M.
    Raabe, Dierk
    [J]. ACTA MATERIALIA, 2014, 80 : 94 - 106
  • [6] Shear-Induced Mixing Governs Codeformation of Crystalline-Amorphous Nanolaminates
    Guo, Wei
    Jaegle, Eric A.
    Choi, Pyuck-Pa
    Yao, Jiahao
    Kostka, Aleksander
    Schneider, Jochen M.
    Raabe, Dierk
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (03)
  • [7] Designing metallic glass matrix composites with high toughness and tensile ductility
    Hofmann, Douglas C.
    Suh, Jin-Yoo
    Wiest, Aaron
    Duan, Gang
    Lind, Mary-Laura
    Demetriou, Marios D.
    Johnson, William L.
    [J]. NATURE, 2008, 451 (7182) : 1085 - U3
  • [8] Effects of loading strain rate and stacking fault energy on nanoindentation creep behaviors of nanocrystalline Cu, Ni-20 wt.%Fe and Ni
    Hu, Jiangjiang
    Sun, Guixun
    Zhang, Xingpu
    Wang, Guoyong
    Jiang, Zhonghao
    Han, Shuang
    Zhang, Jinyu
    Lian, Jianshe
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 647 : 670 - 680
  • [9] Nanolaminates Utilizing Size-Dependent Homogeneous Plasticity of Metallic Glasses
    Kim, Ju-Young
    Jang, Dongchan
    Greer, Julia R.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (23) : 4550 - 4554
  • [10] Mechanical behavior of nano scale Cu/PdSi multilayers
    Knorr, I.
    Cordero, N. M.
    Lilleodden, E. T.
    Volkert, C. A.
    [J]. ACTA MATERIALIA, 2013, 61 (13) : 4984 - 4995