Nanoindentation investigation on creep behavior of amorphous Cu-Zr-AI/nano crystalline Cu nanolaminates

被引:27
作者
Ma, Y. [1 ]
Peng, G. J. [1 ]
Feng, Y. H. [2 ]
Zhang, T. H. [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mech Engn, Inst Micro Nanomech Testing Technol & Applicat, Hangzhou 310014, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanolaminates; Amorphous alloy; Nanoindentation; Creep; Strain rate sensitivity; SHEAR TRANSFORMATION ZONE; STRAIN-RATE SENSITIVITY; METALLIC GLASSY FILMS; MECHANICAL-BEHAVIOR; NANOCRYSTALLINE CU; TENSILE DUCTILITY; PLASTIC-FLOW; DEFORMATION; STRENGTH; MULTILAYERS;
D O I
10.1016/j.jnoncrysol.2017.03.037
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Berkovich nanoindentation experiments have been performed on amorphous /nanocrystalline nanolaminates with individual Cu-Zr-Al layers (45 nm, 90 nm, 225 nm) and Cu layers (7.5 nm & 15 nm). Elastic modulus, hardness and indentation morphology were detected and compared to those of single Cu-Zr-Al thin film. Creep deformation was systematically investigated at various holding depths and loading rates. For the sample with thinner amorphous layer, a more pronounced creep deformation was observed and it was confirmed to be due to the size effect of Cu-Zr-Al layers and the addition of Cu layers. The creep deformation was identified to be history-independent through applying various loading rates. The strain rate sensitivities were calculated from the steady-state creep and a sharp enlargement appeared as the amorphous layer reduced down to 90 nm, implying a transition of creep mechanism in nanolaminates. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 38 条
[1]   On the strain rate sensitivity of plastic flow in metallic glasses [J].
Bhattacharyya, Abir ;
Singh, Gaurav ;
Prasad, K. Eswar ;
Narasimhan, R. ;
Ramamurty, U. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 625 :245-251
[2]  
Choi I.C., 2012, NANO, V5, P7
[3]  
Cui Y. W., 2016, SCI REP, P6
[4]   Tensile ductility and necking of metallic glass [J].
Guo, H. ;
Yan, P. F. ;
Wang, Y. B. ;
Tan, J. ;
Zhang, Z. F. ;
Sui, M. L. ;
Ma, E. .
NATURE MATERIALS, 2007, 6 (10) :735-739
[5]   Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates [J].
Guo, Wei ;
Jaegle, Eric ;
Yao, Jiahao ;
Maier, Verena ;
Korte-Kerzel, Sandra ;
Schneider, Jochen M. ;
Raabe, Dierk .
ACTA MATERIALIA, 2014, 80 :94-106
[6]   Shear-Induced Mixing Governs Codeformation of Crystalline-Amorphous Nanolaminates [J].
Guo, Wei ;
Jaegle, Eric A. ;
Choi, Pyuck-Pa ;
Yao, Jiahao ;
Kostka, Aleksander ;
Schneider, Jochen M. ;
Raabe, Dierk .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)
[7]   Designing metallic glass matrix composites with high toughness and tensile ductility [J].
Hofmann, Douglas C. ;
Suh, Jin-Yoo ;
Wiest, Aaron ;
Duan, Gang ;
Lind, Mary-Laura ;
Demetriou, Marios D. ;
Johnson, William L. .
NATURE, 2008, 451 (7182) :1085-U3
[8]   Effects of loading strain rate and stacking fault energy on nanoindentation creep behaviors of nanocrystalline Cu, Ni-20 wt.%Fe and Ni [J].
Hu, Jiangjiang ;
Sun, Guixun ;
Zhang, Xingpu ;
Wang, Guoyong ;
Jiang, Zhonghao ;
Han, Shuang ;
Zhang, Jinyu ;
Lian, Jianshe .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 647 :670-680
[9]   Nanolaminates Utilizing Size-Dependent Homogeneous Plasticity of Metallic Glasses [J].
Kim, Ju-Young ;
Jang, Dongchan ;
Greer, Julia R. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (23) :4550-4554
[10]   Mechanical behavior of nano scale Cu/PdSi multilayers [J].
Knorr, I. ;
Cordero, N. M. ;
Lilleodden, E. T. ;
Volkert, C. A. .
ACTA MATERIALIA, 2013, 61 (13) :4984-4995