CONVERGENCE OF A BLOW-UP CURVE FOR A SEMILINEAR WAVE EQUATION

被引:2
作者
Sasaki, Takiko [1 ]
机构
[1] Natl Inst Technol, Ibaraki Coll, 866 Nakane, Hitachinaka, Ibaraki 3128508, Japan
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2021年 / 14卷 / 03期
基金
日本学术振兴会;
关键词
Blow-up; wave equation; numerical analysis; CHARACTERISTIC POINTS; REGULARITY; EXISTENCE;
D O I
10.3934/dcdss.2020388
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a blow-up phenomenon for partial derivative t(u)(2)u(epsilon) - epsilon(2)partial derivative(2)(x)u(epsilon) = F(partial derivative(t)u(epsilon)), The derivative of the solution partial derivative(t)u(epsilon) blows-up on a curve t = T-epsilon(X) if we impose some conditions on the initial values and the nonlinear term F. We call T-epsilon blow-up curve for partial derivative(2)(t)u(epsilon) - epsilon(2)partial derivative(2)(x)u(epsilon) = F(partial derivative(t)u(epsilon)). In the same way, we consider the blow-up curve t = (T) over tilde (x) for partial derivative(2)(t)u = F(partial derivative(t)u). The purpose of this paper is to show that, for each x, T-epsilon(x) converges to (T) over tilde (x) as epsilon -> 0.
引用
收藏
页码:1133 / 1143
页数:11
相关论文
共 13 条
[1]   BLOW-UP ESTIMATES FOR A NONLINEAR HYPERBOLIC HEAT-EQUATION [J].
BELLOUT, H ;
FRIEDMAN, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :354-366
[2]   THE BLOW-UP BOUNDARY FOR NONLINEAR-WAVE EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (01) :223-241
[3]  
FRIEDMAN A, 1988, T AM MATH SOC, V308, P349
[4]   The blow-up curve of solutions of mixed problems for semilinear wave equations with exponential nonlinearities in one space dimension, I [J].
Godin, P .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (01) :69-95
[5]   Blow-up behavior for the Klein-Gordon and other perturbed semilinear wave equations [J].
Hamza, M. A. ;
Zaag, H. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (08) :1087-1109
[6]   Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation [J].
Merle, Frank ;
Zaag, Hatem .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (01) :55-86
[7]   Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension [J].
Merle, Frank ;
Zaag, Hatem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (01) :43-121
[8]  
Merle F, 2012, AM J MATH, V134, P581
[9]  
NAKAGAWA T, 1976, APPL MATH OPT, V2, P337
[10]   Remarks on the blow-up boundaries and rates for nonlinear wave equations [J].
Ohta, M ;
Takamura, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (07) :693-698