Spanning cubic graph designs

被引:3
作者
Adams, Peter [1 ]
Ardal, Hayri [2 ]
Manuch, Jan [3 ]
Hoa, Vu Dinh [5 ]
Rosenfeld, Moshe [4 ]
Stacho, Ladislav [2 ]
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[4] Univ Washington, Inst Technol, Tacoma, WA USA
[5] Hanoi Univ Educ, Dept Informat Technol, Hanoi, Vietnam
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Graph decomposition; Block designs; Cubic graph; Complete graph; OBERWOLFACH PROBLEM; FACTORIZATIONS; PROOF;
D O I
10.1016/j.disc.2008.07.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Graph designs are natural extensions of BIBDs (balanced incomplete block designs). In this paper we explore spanning cubic graph designs and develop tools for constructing some of them. We show that K-16 can be decomposed into each of the 4060 connected cubic graphs of order 16, and into precisely 144 of the 147 disconnected cubic graphs of order 16. We also identify some infinite families of cubic graphs of order 6n + 4 that decompose K6n+4, (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5781 / 5788
页数:8
相关论文
共 24 条