Scale-Free Convolutional Neural Network for Remote Sensing Scene Classification

被引:176
|
作者
Xie, Jie [1 ,2 ]
He, Nanjun [1 ,2 ]
Fang, Leyuan [1 ,2 ]
Plaza, Antonio [3 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Key Lab Visual Percept & Artificial Intelligence, Changsha 410082, Hunan, Peoples R China
[3] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, E-10003 Caceres, Spain
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 09期
基金
中国博士后科学基金;
关键词
Free-scale convolutional neural networks (CNNs); fully connected layers (FCLs); remote sensing scene classification; IMAGE RETRIEVAL; FEATURES;
D O I
10.1109/TGRS.2019.2909695
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Fine-tuning of pretrained convolutional neural networks (CNNs) has been proven to be an effective strategy for remote sensing image scene classification, particularly when a limited number of labeled data sets are available for training purposes. However, such a fine-tuning process often needs that the input images are resized into a fixed size to generate input vectors of the size required by fully connected layers (FCLs) in the pretrained CNN model. Such a resizing process often discards key information in the scenes and thus deteriorates the classification performance. To address this issue, in this paper, we introduce a scale-free CNN (SF-CNN) for remote sensing scene classification. Specifically, the FCLs in the CNN model are first converted into convolutional layers, which not only allow the input images to be of arbitrary sizes but also retain the ability to extract discriminative features using a traditional sliding-window-based strategy. Then, a global average pooling (GAP) layer is added after the final convolutional layer so that input images of arbitrary size can be mapped to feature maps of uniform size. Finally, we utilize the resulting feature maps to create a new FCL that is fed to a softmax layer for final classification. Our experimental results conducted using several real data sets demonstrate the superiority of the proposed SF-CNN method over several well-known classification methods, including pretrained CNN-based ones.
引用
收藏
页码:6916 / 6928
页数:13
相关论文
共 50 条
  • [1] Multi-scale Convolutional Neural Network for Remote Sensing Scene Classification
    Alhichri, Haikel
    Alajlan, Naif
    Bazi, Yakoub
    Rabczuk, Timon
    2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY (EIT), 2018, : 113 - 117
  • [2] A Feature Aggregation Convolutional Neural Network for Remote Sensing Scene Classification
    Lu, Xiaoqiang
    Sun, Hao
    Zheng, Xiangtao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7894 - 7906
  • [3] Remote-Sensing Scene Classification Based on Memristor Convolutional Neural Network
    Zhao Yibo
    Zhang Yi
    Yu Chengcheng
    Yang Qing
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (18)
  • [4] Scene Classification of Remote Sensing Image Based on Deep Convolutional Neural Network
    Yang, Zhou
    Mu, Xiao-dong
    Zhao, Feng-an
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [5] An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
    Yu, Donghang
    Xu, Qing
    Guo, Haitao
    Zhao, Chuan
    Lin, Yuzhun
    Li, Daoji
    SENSORS, 2020, 20 (07)
  • [6] Scene classification of remote sensing image using ensemble convolutional neural network
    Yu D.
    Zhang B.
    Zhao C.
    Guo H.
    Lu J.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (06): : 717 - 727
  • [7] Implementation of deep convolutional neural network for classification of multiscaled and multiangled remote sensing scene
    Alegavi, S. S.
    Sedamkar, R. R.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2020, 14 (01): : 21 - 34
  • [8] Convolutional Neural Network for Remote-Sensing Scene Classification: Transfer Learning Analysis
    de Lima, Rafael Pires
    Marfurt, Kurt
    REMOTE SENSING, 2020, 12 (01)
  • [9] Siamese Convolutional Neural Networks for Remote Sensing Scene Classification
    Liu, Xuning
    Zhou, Yong
    Zhao, Jiaqi
    Yao, Rui
    Liu, Bing
    Zheng, Yi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1200 - 1204
  • [10] Deep Object-Centric Pooling in Convolutional Neural Network for Remote Sensing Scene Classification
    Qi, Kunlun
    Yang, Chao
    Hu, Chuli
    Shen, Yonglin
    Wu, Huayi
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14 : 7857 - 7868