Molecular Simulation Study of the Adsorption and Diffusion Properties of Terephthalic Acid in Various Metal Organic Frameworks

被引:14
作者
Bigdeli, Ali [1 ]
Khorasheh, Farhad [1 ]
Tourani, Somayeh [2 ]
Khoshgard, Ahmad [1 ]
Bidaroni, H. Hassani [1 ]
机构
[1] Islamic Azad Univ, Dept Chem Engn, South Tehran Branch, Tehran, Iran
[2] Islamic Azad Univ, Dept Chem Engn, Mahshahr Branch, Mahshahr, Iran
关键词
Removal; Terephthalic acid; Metal organic frameworks; Molecular dynamics simulation; FORCE-FIELD; REMOVAL; WATER; DYNAMICS; CO2; SEPARATION; CH4; HYDROCARBONS; MIL-100(FE); HYDROGEN;
D O I
10.1007/s10904-019-01323-9
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Adsorption and diffusion of terephthalic acid (TPA) molecules in metal organic frameworks of MIL-101(Cr), MIL-100(Cr), Cu-BTC, DUT-23(Cu), UIO-66 and UMCM-2 from water are investigated by using molecular simulation at ambient temperature and pressure. The simulation results indicated that UMCM-2 and UIO-66 have the greatest (1894.19 mg/g) and the lowest (199.67 mg/g) TPA adsorption, respectively, and diffusion coefficients of TPA in MIL-101(Cr) (12.10 x 10(-10) m(2)/s) and UMCM-2 (9.70 x 10(-10) m(2)/s) are higher than the others. Also, MIL-101(Cr) is modified with other metal ions such as Al, Fe, Mn and V, due to having the highest diffusion coefficient and acceptable adsorption amount of TPA, and then their adsorption and diffusion properties for TPA molecules are investigated. According to simulation results, the adsorption and diffusion of TPA is changed by changing metal cations in MIL-101(M) structure and MIL-101(A1) structure is the best absorbent with the TPA adsorption and diffusion coefficient 1869.78 mg/g and 15.51 x 10(-10) m(2)/s, respectively.
引用
收藏
页码:1643 / 1652
页数:10
相关论文
共 57 条
[1]   Mechanism of benzene diffusion in MOF-5: A molecular dynamics investigation [J].
Amirjalayer, Saeed ;
Schmid, Rochus .
MICROPOROUS AND MESOPOROUS MATERIALS, 2009, 125 (1-2) :90-96
[2]   Removal of benzoic acid from industrial wastewater using metal organic frameworks: equilibrium, kinetic and thermodynamic study [J].
Behvandi, A. ;
Safekordi, A. A. ;
Khorasheh, F. .
JOURNAL OF POROUS MATERIALS, 2017, 24 (01) :165-178
[3]   Molecular dynamics simulations of metal-organic frameworks as membranes for gas mixtures separation [J].
Cabrales-Navarro, Fredy A. ;
Gomez-Ballesteros, Jose L. ;
Balbuena, Perla B. .
JOURNAL OF MEMBRANE SCIENCE, 2013, 428 :241-250
[4]   Molecular Simulation Study on the Separation of Xylene Isomers in MIL-47 Metal-Organic Frameworks [J].
Castillo, J. M. ;
Vlugt, T. J. H. ;
Calero, Sofia .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (49) :20869-20874
[5]   Investigating adsorption- and diffusion selectivity of CO2 and CH4 from air on zeolitic imidazolate Framework-78 using molecular simulations [J].
Chanajaree, R. ;
Chokbunpiam, T. ;
Kaerger, J. ;
Hannongbua, S. ;
Fritzsche, S. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 274 :266-276
[6]   Metal-organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography-tandem mass spectrometry [J].
Chen, Xiang-Feng ;
Zang, Hao ;
Wang, Xia ;
Cheng, Jian-Guang ;
Zhao, Ru-Song ;
Cheng, Chuan-Ge ;
Lu, Xiao-Qing .
ANALYST, 2012, 137 (22) :5411-5419
[7]   Gate opening effect for carbon dioxide in ZIF-8 by molecular dynamics - Confirmed, but at high CO2 pressure [J].
Chokbunpiam, T. ;
Fritzsche, S. ;
Chmelik, C. ;
Caro, J. ;
Janke, W. ;
Hannongbua, S. .
CHEMICAL PHYSICS LETTERS, 2016, 648 :178-181
[8]  
Damm W, 1997, J COMPUT CHEM, V18, P1955, DOI 10.1002/(SICI)1096-987X(199712)18:16<1955::AID-JCC1>3.0.CO
[9]  
2-L
[10]   Understanding Adsorption of Highly Polar Vapors on Mesoporous MIL-100(Cr) and MIL-101 (Cr): Experiments and Molecular Simulations [J].
De Lange, Martijn F. ;
Gutierrez-Sevillano, Juan-Jose ;
Hamad, Said ;
Vlugt, Thijs J. H. ;
Calero, Sofia ;
Gascon, Jorge ;
Kapteijn, Freek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (15) :7613-7622