A note on Roman domination in graphs

被引:25
作者
Xing, Hua-Ming [1 ]
Chen, Xin
Chen, Xue-Gang
机构
[1] Langfang Teachers Coll, Dept Math, Hebei 065000, Peoples R China
[2] Beijing Informat Technol Inst, Dept Comp Informat Syst, Beijing 100101, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Informat Sci & Engn, Shandong 271019, Peoples R China
关键词
domination; domination number; Roman domination;
D O I
10.1016/j.disc.2006.06.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a simple graph. A subset S subset of V is a dominating set of G, if for any vertex u is an element of V - S, there exists a vertex v is an element of S such that uv is an element of E. The domination number of G, gamma(G), equals the minimum cardinality, of a dominating set. A Roman dominating function on graph G = (V, E) is a function f : V -> {0, 1, 2} satisfying the condition that every vertex v for which f (v) = 0 is adjacent to at least one vertex u for which f (u) = 2. The weight of a Roman dominating function is the value f (V) = Sigma V-v is an element of f (v). The Roman domination number of a graph G, denoted by gamma(R) (G), equals the minimum weight of a Roman dominating function on G. In this paper, for any integer k (2 <= k <= gamma(G)), we give a characterization of graphs for which gamma(R)(G) = gamma(G) + k, which settles an open problem in [ET Cockayne, P.M. Dreyer Jr, S.M. Hedetniemi et al. On Roman domination in graphs, Discrete Math. 278 (2004) 11-22]. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3338 / 3340
页数:3
相关论文
共 4 条
[1]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[2]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[3]   Defendens imperium romanum: A classical problem in military strategy [J].
ReVelle, CS ;
Rosing, KE .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (07) :585-594
[4]   Defend the Roman Empire! [J].
Stewart, I .
SCIENTIFIC AMERICAN, 1999, 281 (06) :136-+