Mapping Heat Origin in Plasmonic Structures

被引:266
作者
Baffou, Guillaume [1 ]
Girard, Christian [2 ]
Quidant, Romain [1 ,3 ]
机构
[1] ICFO, Barcelona 08860, Spain
[2] Univ Toulouse 3, CNRS, CEMES, F-31055 Toulouse, France
[3] ICREA, Barcelona 08010, Spain
关键词
PHOTOTHERMAL CANCER-THERAPY; NANOPARTICLES;
D O I
10.1103/PhysRevLett.104.136805
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the physics of photoinduced heat generation in plasmonic structures by using a novel thermal microscopy technique based on molecular fluorescence polarization anisotropy. This technique enables us to image the heat source distribution in light-absorbing systems such as plasmonic nanostructures. While the temperature distribution in plasmonic nanostructures is always fairly uniform because of the fast thermal diffusion in metals, we show that the heat source density is much more contrasted. Unexpectedly the heat origin (thermal hot spots) usually does not correspond to the optical hot spots of the plasmon mode. Numerical simulations based on the Green dyadic method confirm our observations and enable us to derive the general physical rules governing heat generation in plasmonic structures.
引用
收藏
页数:4
相关论文
共 22 条
[1]   Heat generation in plasmonic nanostructures: Influence of morphology [J].
Baffou, G. ;
Quidant, R. ;
Girard, C. .
APPLIED PHYSICS LETTERS, 2009, 94 (15)
[2]   Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy [J].
Baffou, G. ;
Kreuzer, M. P. ;
Kulzer, F. ;
Quidant, R. .
OPTICS EXPRESS, 2009, 17 (05) :3291-3298
[3]   Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes [J].
Cao, Linyou ;
Barsic, David N. ;
Guichard, Alex R. ;
Brongersma, Mark L. .
NANO LETTERS, 2007, 7 (11) :3523-3527
[4]   Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer [J].
Challener, W. A. ;
Peng, Chubing ;
Itagi, A. V. ;
Karns, D. ;
Peng, Wei ;
Peng, Yingguo ;
Yang, XiaoMin ;
Zhu, Xiaobin ;
Gokemeijer, N. J. ;
Hsia, Y. -T. ;
Ju, G. ;
Rottmayer, Robert E. ;
Seigler, Michael A. ;
Gage, E. C. .
NATURE PHOTONICS, 2009, 3 (04) :220-224
[5]   Thermal radiation scanning tunnelling microscopy [J].
De Wilde, Yannick ;
Formanek, Florian ;
Carminati, Remi ;
Gralak, Boris ;
Lemoine, Paul-Arthur ;
Joulain, Karl ;
Mulet, Jean-Philippe ;
Chen, Yong ;
Greffet, Jean-Jacques .
NATURE, 2006, 444 (7120) :740-743
[6]   Heat transfer between two nanoparticles through near field interaction [J].
Domingues, G ;
Volz, S ;
Joulain, K ;
Greffet, JJ .
PHYSICAL REVIEW LETTERS, 2005, 94 (08)
[7]   Extended organization of colloidal microparticles by surface plasmon polariton excitation [J].
Garcés-Chávez, V ;
Quidant, R ;
Reece, PJ ;
Badenes, G ;
Torner, L ;
Dholakia, K .
PHYSICAL REVIEW B, 2006, 73 (08)
[8]   Spectroscopic mode mapping of resonant plasmon nanoantennas [J].
Ghenuche, Petru ;
Cherukulappurath, Sudhir ;
Taminiau, Tim H. ;
van Hulst, Niek F. ;
Quidant, Romain .
PHYSICAL REVIEW LETTERS, 2008, 101 (11)
[9]   Shaping and manipulation of light fields with bottom-up plasmonic structures [J].
Girard, C. ;
Dujardin, E. ;
Baffou, G. ;
Quidant, R. .
NEW JOURNAL OF PHYSICS, 2008, 10
[10]   Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy [J].
Gobin, Andre M. ;
Lee, Min Ho ;
Halas, Naomi J. ;
James, William D. ;
Drezek, Rebekah A. ;
West, Jennifer L. .
NANO LETTERS, 2007, 7 (07) :1929-1934