Some comments on the main fire retardancy mechanisms in polymer nanocomposites

被引:203
作者
Schartel, B. [1 ]
Bartholmai, M. [1 ]
Knoll, U. [1 ]
机构
[1] Fed Inst Mat Res & Testing, BAM, D-12205 Berlin, Germany
关键词
flame retardance; nanocomposites; organoclay; cone calorimeter; flammability;
D O I
10.1002/pat.792
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Barrier formation and increasing the melt viscosity are addressed as the two main general fire retardancy mechanisms of polymer nanocomposites. They result in specific impacts on fire properties that consequentially cause varying flame retardancy efficiency in different fire tests. The barrier formation retards mainly flame spread (peak of heat release rate) in developing fires, but does not reduce fire load (total heat evolved), ignitability or flammability (limiting oxygen index, UL 94). Furthermore, this flame retardancy effect increases with increasing irradiation and vanishes with decreasing irradiation. The increased melt viscosity prevents dripping, which is beneficial or disadvantageous depending on the fire test used. In some test, it become the dominant influence, transforming self-extinguishing samples into flammable materials or causing wicking. Advantages and the limits are sketched comprehensively for exploiting the main general fire retardancy mechanisms of polymer nanocomposites. It is concluded that barrier formation and changing the melt viscosity in nanocomposites are not sufficient for most applications, but must be accompanied by additional mechanisms in special systems or in combination with other flame retardants. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:772 / 777
页数:6
相关论文
共 31 条
[1]  
Alexandre M, 2001, MACROMOL RAPID COMM, V22, P643, DOI 10.1002/1521-3927(20010501)22:8<643::AID-MARC643>3.0.CO
[2]  
2-#
[3]  
[Anonymous], POLYM CLAY NANOCOMPO
[4]  
[Anonymous], 1992, HEAT RELEASE FIRES
[5]   Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system [J].
Bartholmai, M ;
Schartel, B .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2004, 15 (07) :355-364
[6]   Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites [J].
Dennis, HR ;
Hunter, DL ;
Chang, D ;
Kim, S ;
White, JL ;
Cho, JW ;
Paul, DR .
POLYMER, 2001, 42 (23) :9513-9522
[7]   Elaboration of EVA-nanoclay systems-characterization, thermal behaviour and fire performance [J].
Duquesne, S ;
Jama, C ;
Le Bras, M ;
Delobel, R ;
Recourt, P ;
Gloaguen, JM .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (08) :1141-1148
[8]   Nylon 6 nanocomposites: the effect of matrix molecular weight [J].
Fornes, TD ;
Yoon, PJ ;
Keskkula, H ;
Paul, DR .
POLYMER, 2001, 42 (25) :9929-9940
[9]   Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites [J].
Gilman, JW .
APPLIED CLAY SCIENCE, 1999, 15 (1-2) :31-49
[10]  
Gilman JW, 1997, SAMPE J, V33, P40