FDTD Method for Wave Propagation in Havriliak-Negami Media based on Fractional Derivative Approximation

被引:0
作者
Antonopoulos, Christos S. [1 ]
Kantartzis, Nikolaos V. [1 ]
Rekanos, Ioannis [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Elect & Comp Engn, GR-54124 Thessaloniki, Greece
来源
2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC) | 2016年
关键词
Dispersive media; finite-difference methods; fractional calculus; Havriliak-Negami media; wave propagation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A finite-difference time-domain (FDTD) method for simulating wave propagation in Havriliak-Negami (HN) dispersive media is presented. In an HN medium, the polarization relation is a fractional differential equation, whose numerical treatment results in significant memory storage demands due to the nonlocality of the fractional differential operator. However, by an appropriate approximation of the fractional differential operator, an FDTD scheme with reasonable memory requirements is feasible.
引用
收藏
页数:1
相关论文
共 50 条
  • [1] FDTD Method for Wave Propagation in Havriliak-Negami Media Based on Fractional Derivative Approximation
    Antonopoulos, Christos S.
    Kantartzis, Nikolaos V.
    Rekanos, Ioannis T.
    IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (06)
  • [2] Fractional Derivative Based FDTD Modeling of Transient Wave Propagation in Havriliak-Negami Media
    Mescia, Luciano
    Bia, Pietro
    Caratelli, Diego
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (09) : 1920 - 1929
  • [3] Comments on "Fractional Derivative Based FDTD Modeling of Transient Wave Propagation in Havriliak-Negami Media"
    Rekanos, Ioannis T.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (12) : 4188 - 4190
  • [4] FDTD Modeling of Havriliak-Negami Media
    Rekanos, Ioannis T.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (02) : 49 - 51
  • [5] A novel FDTD formulation based on fractional derivatives for dispersive Havriliak-Negami media
    Bia, P.
    Caratelli, D.
    Mescia, L.
    Cicchetti, R.
    Maione, G.
    Prudenzano, F.
    SIGNAL PROCESSING, 2015, 107 : 312 - 318
  • [6] Grunwald-Letnikov operators for fractional relaxation in Havriliak-Negami models
    Garrappa, Roberto
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 38 : 178 - 191
  • [7] Approximation of Grunwald-Letnikov Fractional Derivative for FDTD Modeling of Cole-Cole Media
    Rekanos, Ioannis T.
    Yioultsis, Traianos V.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 181 - 184
  • [8] The Havriliak-Negami and Jurlewicz-Weron-Stanislavsky relaxation models revisited: memory functions based study
    Gorska, K.
    Horzela, A.
    Penson, K. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (31)
  • [9] A causal fractional derivative model for acoustic wave propagation in lossy media
    Wen Chen
    Shuai Hu
    Wei Cai
    Archive of Applied Mechanics, 2016, 86 : 529 - 539
  • [10] A causal fractional derivative model for acoustic wave propagation in lossy media
    Chen, Wen
    Hu, Shuai
    Cai, Wei
    ARCHIVE OF APPLIED MECHANICS, 2016, 86 (03) : 529 - 539