Air-Cathode with 3D Multiphase Electrocatalyst Interface Design for High-Efficiency and Durable Rechargeable Zinc-Air Batteries

被引:8
作者
Askari, Sadegh [1 ]
Mariotti, Davide [2 ]
McGlynn, Ruairi [2 ]
Benedikt, Jan [1 ]
机构
[1] Univ Kiel, Inst Expt & Appl Phys, Leibnizstr 17, D-24118 Kiel, Germany
[2] Ulster Univ, Engn Res Inst ERI, Coleraine BT37 0QB, Londonderry, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
air-cathodes; electrocatalyst interfaces; oxygen evolution reaction catalysts; oxygen reduction reaction catalysts; zinc– air batteries;
D O I
10.1002/ente.202000999
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The development of rechargeable zinc-air batteries is hindered by the low energy-conversion efficiency and the short cycle life, which are partly due to the unsatisfactory performance of the oxygen electrocatalysts on the air-cathode. The low performance of the catalysts is partially due to the complexity of the gas-involving multiphase interface required for the oxygen catalysis reactions, and it is often acquired only for a fraction of the loaded catalyst that is in direct contact with the 2D surface of the gas diffusion layer (GDL). A paradigm is proposed for extending the active region using an enhanced 3D multiphase interface on the cathode, which comprises abundant active sites with optimized hydrophobicity and reliable stability. The oxygen reduction reaction (ORR) or the bifunctional catalyst is embedded into the bulk of the GDL and forms a semihydrophobic catalyst layer (SCL), whereas an auxiliary hydrophilic oxygen evolution reaction (OER) catalyst layer integrated onto the GDL assists to reduce the polarization during the cell charging and improves the cathode durability. An air-cathode comprising the SCL exhibits an overall performance superior to the conventional cathode counterparts including cathodes with metal-based catalysts, due to the enhanced and optimized multiphase interface on the cathode.
引用
收藏
页数:10
相关论文
共 70 条
[1]   Co9S8@MoS2 Core Shell Heterostructures as Trifunctional Electrocatalysts for Overall Water Splitting and Zn Air Batteries [J].
Bai, Jinman ;
Meng, Tao ;
Guo, Donglei ;
Wang, Shuguang ;
Mao, Baoguang ;
Cao, Minhua .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) :1678-1689
[2]   Mg Doped Perovskite LaNiO3 Nanofibers as an Efficient Bifunctional Catalyst for Rechargeable Zinc-Air Batteries [J].
Bian, Juanjuan ;
Su, Rui ;
Yao, Yuan ;
Wang, Jian ;
Zhou, Jigang ;
Li, Fan ;
Wang, Zhong Lin ;
Sun, Chunwen .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (01) :923-+
[3]   In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn-Air Batteries [J].
Bin, Duan ;
Yang, Beibei ;
Li, Chao ;
Liu, Yao ;
Zhang, Xiao ;
Wang, Yonggang ;
Xia, Yongyao .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (31) :26178-26187
[4]   Beyond the top of the volcano? - A unified approach to electrocatalytic oxygen reduction and oxygen evolution [J].
Busch, Michael ;
Halck, Niels B. ;
Kramm, Ulrike I. ;
Siahrostami, Samira ;
Krtil, Petr ;
Rossmeisl, Jan .
NANO ENERGY, 2016, 29 :126-135
[5]   Light-weight 3D Co-N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc-air batteries [J].
Chen, Shengmei ;
Cheng, Junye ;
Ma, Longtao ;
Zhou, Shanke ;
Xu, Xiuwen ;
Zhi, Chunyi ;
Zhang, Wenjun ;
Zhi, Linjie ;
Zapien, J. Antonio .
NANOSCALE, 2018, 10 (22) :10412-10419
[6]   Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn-air batteries [J].
Chen, Ya-Nan ;
Guo, Yibo ;
Cui, Huijuan ;
Xie, Zhaojun ;
Zhang, Xin ;
Wei, Jinping ;
Zhou, Zhen .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (20) :9716-9722
[7]   Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries [J].
Chen, Yu ;
Kone, Issa ;
Gong, Yi ;
Xie, Ao ;
Hu, Hanjun ;
Kong, Dandan ;
Liu, Jia ;
Tang, Yang ;
Yang, Xiaojin ;
Pang, Ran ;
Wan, Pingyu .
CARBON, 2019, 152 :325-334
[8]   Cu-Co Bimetallic Oxide Quantum Dot Decorated Nitrogen-Doped Carbon Nanotubes: A High-Efficiency Bifunctional Oxygen Electrode for Zn-Air Batteries [J].
Cheng, Hui ;
Li, Mei-Ling ;
Su, Chang-Yuan ;
Li, Nan ;
Liu, Zhao-Qing .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (30)
[9]   NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes [J].
Dionigi, Fabio ;
Strasser, Peter .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[10]   Modification of the surface chemistry of activated carbons [J].
Figueiredo, JL ;
Pereira, MFR ;
Freitas, MMA ;
Orfao, JJM .
CARBON, 1999, 37 (09) :1379-1389