Scattering for the quartic generalised Korteweg-de Vries equation

被引:55
作者
Tao, Terence [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
KdV; gKdV; scattering; soliton; asymptotic stability; critical regularity;
D O I
10.1016/j.jde.2006.07.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the quartic generalised KdV equation U-t + U-xxx + (U-4)(x) = 0 is globally well posed for data in the critical (scale-invariant) space, (R) with small norm (and locally well posed for large norm), improving a result of Grumrock [A. Grunrock, A bilinear Airy-estimate with application to gKdV-3, Differential Integral Equations 18 (12) (2005) 1333-1339]. As an application we obtain scattering results in H-x(1)(R) boolean AND H-x(-1/6) (R) for the radiation component of a perturbed soliton for this equation, improving the asymptotic stability results of Martel and Merle [Y. Martel, F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (3) (2001) 219-254]. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:623 / 651
页数:29
相关论文
共 14 条
[1]  
BEJENARU I, MATHAP0604255
[2]  
Christ M, 2003, AM J MATH, V125, P1235
[3]   Sharp global well-posedness for KDV and modified KDV on R and T [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :705-749
[4]  
COTE R, 2006, ECOLE NORMALE SUPERI
[5]  
Côte R, 2006, DIFFER INTEGRAL EQU, V19, P163
[6]  
Grünrock A, 2005, DIFFER INTEGRAL EQU, V18, P1333
[7]  
IONESCU A, MATHAP0605209
[8]   WELL-POSEDNESS AND SCATTERING RESULTS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION VIA THE CONTRACTION PRINCIPLE [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (04) :527-620
[9]   Asymptotic stability of solitons of the subcritical gKdV equations revisited [J].
Martel, Y ;
Merle, F .
NONLINEARITY, 2005, 18 (01) :55-80
[10]   Asymptotic stability of solitons for subcritical generalized KdV equations [J].
Martel, Y ;
Merle, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 157 (03) :219-254