A Novel Rotating Machinery Fault Diagnosis Method Based on Adaptive Deep Belief Network Structure and Dynamic Learning Rate Under Variable Working Conditions

被引:11
|
作者
Shi, Peiming [1 ]
Xue, Peng [1 ]
Liu, Aoyun [1 ]
Han, Dongying [2 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Sch Vehicles & Energy, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Training; Feature extraction; Neurons; Fault diagnosis; Data models; Machinery; Vibrations; Deep belief network; particle swarm optimization; dynamic learning rate strategy; multi condition fault diagnosis; wavelet packet energy entropy; CANONICAL CORRELATION-ANALYSIS;
D O I
10.1109/ACCESS.2021.3066594
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of modern industries, the working environment of rotating machinery has become increasingly complicated. Therefore, it is very meaningful to accurately identify the type of equipment failure under variable operating conditions. This paper presents a rotating machinery fault diagnosis method based on dynamic learning rate deep belief network (DBN) with adaptive structure (PSO-DDBN). Firstly, the wavelet packet energy entropy principle was used to obtain the characteristic matrix of the original data, and then the characteristics of the data under variable conditions were distinguished. Secondly, in order to adjust the structure of DBN, the loss function of DBN was used to construct the convergence function in particle swarm optimization (PSO) adaptive process. The dynamic learning rate strategy was applied to the training process of the network. The network gradient value in each iteration was recorded and the dynamic learning rate function was constructed to achieve the purpose of dynamically adjusting the network learning rate and making the network convergence faster and more stable. Then, the performance of PSO-DDBN was verified by the data of bearing and gearbox under variable conditions. Finally, other intelligent diagnosis algorithms were compared with this method, and the results showed that this method had better universality and fault classification ability.
引用
收藏
页码:44569 / 44579
页数:11
相关论文
共 50 条
  • [11] A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery
    Jiang, Hongkai
    Shao, Haidong
    Chen, Xinxia
    Huang, Jiayang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3513 - 3521
  • [12] The fault diagnosis method of rolling bearing under variable working conditions based on deep transfer learning
    Shaojiang Dong
    Kun He
    Baoping Tang
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [13] The fault diagnosis method of rolling bearing under variable working conditions based on deep transfer learning
    Dong, Shaojiang
    He, Kun
    Tang, Baoping
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [14] A novel unsupervised deep learning network for intelligent fault diagnosis of rotating machinery
    Zhao, Xiaoli
    Jia, Minping
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (06): : 1745 - 1763
  • [15] Research on Fault Diagnosis Method of Rotating Machinery Based on Deep Learning
    Chen, Zhouliang
    Li, Zhinong
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 1015 - +
  • [16] An Adaptive Weighted Multiscale Convolutional Neural Network for Rotating Machinery Fault Diagnosis Under Variable Operating Conditions
    Qiao, Huihui
    Wang, Taiyong
    Wang, Peng
    Zhang, Lan
    Xu, Mingda
    IEEE ACCESS, 2019, 7 : 118954 - 118964
  • [17] Wind turbines fault diagnosis method under variable working conditions based on AMVMD and deep discrimination transfer learning network
    Shi, Peiming
    Jia, Linjie
    Yi, Siying
    Han, Dongying
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [18] Deep dynamic adaptation network: a deep transfer learning framework for rolling bearing fault diagnosis under variable working conditions
    Huoyao Xu
    Jie Liu
    Xiangyu Peng
    Junlang Wang
    Chaoming He
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [19] Deep dynamic adaptation network: a deep transfer learning framework for rolling bearing fault diagnosis under variable working conditions
    Xu, Huoyao
    Liu, Jie
    Peng, Xiangyu
    Wang, Junlang
    He, Chaoming
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (01)
  • [20] A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
    Shao Haidong
    Jiang Hongkai
    Zhao Huiwei
    Wang Fuan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 95 : 187 - 204