Sense and nonsense from a systems biology approach to microbial recombinant protein production

被引:29
作者
Sevastsyanovich, Yanina R. [1 ]
Alfasi, Sara N. [1 ]
Cole, Jeffrey A. [1 ]
机构
[1] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
基金
英国生物技术与生命科学研究理事会;
关键词
bacteria; growth arrest; microbial physiology; recombinant protein production (RPP); systems biology; HEAT-SHOCK RESPONSE; SECRETION STRESS-RESPONSE; ESCHERICHIA-COLI PROTEIN; INCLUSION-BODY FORMATION; CHAIN ANTIBODY FRAGMENT; HIGH-LEVEL EXPRESSION; FED-BATCH CULTIVATION; GFP-FUSION PROTEINS; BACILLUS-SUBTILIS; LACTOCOCCUS-LACTIS;
D O I
10.1042/BA20090174
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 'Holy Grail' of recombinant protein production remains the availability of generic protocols and hosts for the production of even the most difficult target products. The present review provides first an explanation why the shock imposed on bacteria using a standard induction protocol not only arrests growth, but also decreases the number of colony-forming units by several orders of magnitude. Particular emphasis is placed on findings of numerous genome-wide transcriptomic studies that highlight cellular stress, in which the general stress, heat-shock and stringent responses are the underlying basis for the manifestation of the deterioration of cell physiology. We then review common approaches used to solve bottlenecks in protein folding and post-translational modification that result in recombinant protein deposition in cytoplasmic inclusion bodies. Finally, we suggest a generic approach to process design that minimizes stress on the production host and a strategy for isolating improved hosts.
引用
收藏
页码:9 / 28
页数:20
相关论文
共 144 条
[1]   Proteomic profiling of recombinant Escherichia coli in high-cell-density fermentations for improved production of an antibody fragment biopharmaceutical [J].
Aldor, IS ;
Krawitz, DC ;
Forrest, W ;
Chen, C ;
Nishihara, JC ;
Joly, JC ;
Champion, KM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (04) :1717-1728
[2]   The extracellular proteome of Bacillus subtilis under secretion stress conditions [J].
Antelmann, H ;
Darmon, E ;
Noone, D ;
Veening, JW ;
Westers, H ;
Bron, S ;
Kuipers, OP ;
Devine, KM ;
Hecker, M ;
van Dijl, JM .
MOLECULAR MICROBIOLOGY, 2003, 49 (01) :143-156
[3]   Formation of active inclusion bodies in the periplasm of Escherichia coli [J].
Arie, Jean-Philippe ;
Miot, Marika ;
Sassoon, Nathalie ;
Betton, Jean-Michel .
MOLECULAR MICROBIOLOGY, 2006, 62 (02) :427-437
[4]   Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae [J].
Arvas, M ;
Pakula, T ;
Lanthaler, K ;
Saloheimo, M ;
Valkonen, M ;
Suortti, T ;
Robson, G ;
Penttilä, M .
BMC GENOMICS, 2006, 7 (1)
[5]   Proteome analysis of Escherichia coli W3110 expressing an heterologous sigma factor [J].
Baglioni, P ;
Bini, L ;
Liberatori, S ;
Pallini, V ;
Marri, L .
PROTEOMICS, 2003, 3 (06) :1060-1065
[6]   Recombinant protein expression in Escherichia coli [J].
Baneyx, F .
CURRENT OPINION IN BIOTECHNOLOGY, 1999, 10 (05) :411-421
[7]   Recombinant protein folding and misfolding in Escherichia coli [J].
Baneyx, F ;
Mujacic, M .
NATURE BIOTECHNOLOGY, 2004, 22 (11) :1399-1408
[8]   Toxicity-based selection of Escherichia coli mutants for functional recombinant protein production:: application to an antibody fragment [J].
Belin, P ;
Dassa, J ;
Drevet, P ;
Lajeunesse, E ;
Savatier, A ;
Boulain, JC ;
Ménez, A .
PROTEIN ENGINEERING DESIGN & SELECTION, 2004, 17 (05) :491-500
[9]   Specific and general stress proteins in Bacillus subtilis - A two-dimensional protein electrophoresis study [J].
Bernhardt, J ;
Volker, U ;
Volker, A ;
Antelmann, H ;
Schmid, R ;
Mach, H ;
Hecker, M .
MICROBIOLOGY-UK, 1997, 143 :999-1017
[10]   Impact of codon usage modification on T cell immunogenicity and longevity of HIV-1 gag-specific DNA vaccines [J].
Bojak, A ;
Wild, J ;
Deml, L ;
Wagner, R .
INTERVIROLOGY, 2002, 45 (4-6) :275-286