On the law of the iterated logarithm for continued fractions with sequentially restricted partial quotients

被引:2
作者
Stadlbauer, Manuel [1 ]
Zhang, Xuan [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, RJ, Brazil
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
sequential dynamical system; almost sure invariance principle; continued fractions with restricted entries;
D O I
10.1088/1361-6544/abd7c5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a law of the iterated logarithm (LIL) for the set of real numbers whose nth partial quotient is bigger than alpha(n), where (alpha(n)) is a sequence such that n-ary sumation 1/alpha(n) is finite. This set is shown to have Hausdorff dimension 1/2 in many cases and the measure in LIL is absolutely continuous to the Hausdorff measure. The result is obtained as an application of a strong invariance principle for unbounded observables on the limit set of a sequential iterated function system.
引用
收藏
页码:1389 / 1407
页数:19
相关论文
共 25 条
[1]   On the Lyapunov spectrum of relative transfer operators [J].
Bessa, Mario ;
Stadlbauer, Manuel .
STOCHASTICS AND DYNAMICS, 2016, 16 (06)
[2]  
Conze JP, 2007, CONTEMP MATH, V430, P89
[3]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[4]   Strong Invariance Principles with Rate for "Reverse" Martingale Differences and Applications [J].
Cuny, Christophe ;
Merlevede, Florence .
JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (01) :137-183
[5]  
Doeblin W., 1940, COMPOS MATH, V7, P353
[6]   A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems [J].
Dragicevic, Davor ;
Froyland, G. ;
Gonzalez-Tokman, C. ;
Vaienti, S. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 360 (03) :1121-1187
[7]   Almost sure invariance principle for random piecewise expanding maps [J].
Dragicevic, Davor ;
Froyland, G. ;
Gonzalez-Tokman, C. ;
Vaienti, S. .
NONLINEARITY, 2018, 31 (05) :2252-2280
[8]  
Einsiedler M, 2011, GRAD TEXTS MATH, V259, P1, DOI 10.1007/978-0-85729-021-2_1
[9]   NONSTATIONARY MIXING AND THE UNIQUE ERGODICITY OF ADIC TRANSFORMATIONS [J].
Fisher, Albert M. .
STOCHASTICS AND DYNAMICS, 2009, 9 (03) :335-391
[10]  
Good IJ, 1941, P CAMB PHILOS SOC, V37, P199