Elimination of Glycerol Production in Anaerobic Cultures of a Saccharomyces cerevisiae Strain Engineered To Use Acetic Acid as an Electron Acceptor

被引:120
|
作者
Medina, Victor Guadalupe [1 ,2 ]
Almering, Marinka J. H. [1 ,2 ]
van Maris, Antonius J. A. [1 ,2 ]
Pronk, Jack T. [1 ,2 ]
机构
[1] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
[2] Kluyver Ctr Genom Ind Fermentat, NL-2628 BC Delft, Netherlands
关键词
LIMITED CHEMOSTAT CULTURES; GLYCEROL-3-PHOSPHATE DEHYDROGENASE; XYLOSE FERMENTATION; GENE DISRUPTION; GLUCOSE; YEAST; METABOLISM; MUTANTS; EXPRESSION; DEPLETION;
D O I
10.1128/AEM.01772-09
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde + NAD(+) + coenzyme A 7 acetyl coenzyme A + NADH + H+), was expressed in the gpd1 Delta gpd2 Delta strain, anaerobic growth was restored by supplementation with 2.0 g liter(-1) acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).
引用
收藏
页码:190 / 195
页数:6
相关论文
共 50 条
  • [1] Anaerobic α-Amylase Production and Secretion with Fumarate as the Final Electron Acceptor in Saccharomyces cerevisiae
    Liu, Zihe
    Osterlund, Tobias
    Hou, Jin
    Petranovic, Dina
    Nielsen, Jens
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (09) : 2962 - 2967
  • [2] Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain
    Vilela, Leonardo de Figueiredo
    Gomes de Araujo, Veronica Parente
    Paredes, Raquel de Sousa
    da Silva Bon, Elba Pinto
    Goncalves Torres, Fernando Araripe
    Neves, Bianca Cruz
    Araujo Eleutherio, Elis Cristina
    AMB EXPRESS, 2015, 5
  • [3] Optimizing the balance between heterologous acetate-and CO2-reduction pathways in anaerobic cultures of Saccharomyces cerevisiae strains engineered for low-glycerol production
    van Aalst, Aafke C. A.
    Geraats, Ellen H.
    Jansen, Mickel L. A.
    Mans, Robert
    Pronk, Jack T.
    FEMS YEAST RESEARCH, 2023, 23
  • [4] Lignin valorization for protocatechuic acid production in engineered Saccharomyces cerevisiae
    Zhang, Ren-Kuan
    Tan, Yong-Shui
    Cui, You-Zhi
    Xin, Xin
    Liu, Zhi-Hua
    Li, Bing-Zhi
    Yuan, Ying-Jin
    GREEN CHEMISTRY, 2021, 23 (17) : 6515 - 6526
  • [5] Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain
    Vos, Tim
    Cortes, Pilar de la Torre
    van Gulik, Walter M.
    Pronk, Jack T.
    Daran-Lapujade, Pascale
    MICROBIAL CELL FACTORIES, 2015, 14
  • [6] Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae
    Malubhoy, Zahabiya
    Bahia, Frederico Mendonca
    de Valk, Sophie Claire
    de Hulster, Erik
    Rendulic, Toni
    Ortiz, Juan Paulo Ragas
    Xiberras, Joeline
    Klein, Mathias
    Mans, Robert
    Nevoigt, Elke
    MICROBIAL CELL FACTORIES, 2022, 21 (01)
  • [7] Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae
    Zahabiya Malubhoy
    Frederico Mendonça Bahia
    Sophie Claire de Valk
    Erik de Hulster
    Toni Rendulić
    Juan Paulo Ragas Ortiz
    Joeline Xiberras
    Mathias Klein
    Robert Mans
    Elke Nevoigt
    Microbial Cell Factories, 21
  • [8] Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction
    Ida, Yoshihiro
    Hirasawa, Takashi
    Furusawa, Chikara
    Shimizu, Hiroshi
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (11) : 4811 - 4819
  • [9] Fermentative production of L-glycerol 3-phosphate utilizing a Saccharomyces cerevisiae strain with an engineered glycerol biosynthetic pathway
    Popp, A.
    Nguyen, H. T. T.
    Boulahya, K.
    Bideaux, C.
    Alfenore, S.
    Guillouet, S. E.
    Nevoigt, E.
    BIOTECHNOLOGY AND BIOENGINEERING, 2008, 100 (03) : 497 - 505
  • [10] Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae
    Zhao, Yujia
    Fan, Jingjing
    Wang, Chen
    Feng, Xudong
    Li, Chun
    BIORESOURCE TECHNOLOGY, 2018, 257 : 339 - 343