DeepCC: a novel deep learning-based framework for cancer molecular subtype classification

被引:132
作者
Gao, Feng [1 ,2 ,3 ]
Wang, Wei [1 ]
Tan, Miaomiao [1 ]
Zhu, Lina [1 ]
Zhang, Yuchen [1 ]
Fessler, Evelyn [4 ]
Vermeulen, Louis [4 ]
Wang, Xin [1 ,5 ]
机构
[1] City Univ Hong Kong, Dept Biomed Sci, Hong Kong, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 6, Dept Colorectal Surg, Guangzhou, Guangdong, Peoples R China
[3] Guangdong Inst Gastroenterol, Guangdong Prov Key Lab Colorectal & Pelv Floor Di, Supported Natl Key Clin Discipline, Guangzhou, Guangdong, Peoples R China
[4] Univ Amsterdam, AMC, CEMM, Lab Expt Oncol & Radiobiol LEXOR, Amsterdam, Netherlands
[5] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China
基金
欧洲研究理事会;
关键词
II COLON-CANCER; GENE-EXPRESSION; BREAST-CANCER; VALIDATION; SIGNATURE; HETEROGENEITY; RECURRENCE; PROGNOSIS; DISCOVERY; THERAPY;
D O I
10.1038/s41389-019-0157-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Molecular subtyping of cancer is a critical step towards more individualized therapy and provides important biological insights into cancer heterogeneity. Although gene expression signature-based classification has been widely demonstrated to be an effective approach in the last decade, the widespread implementation has long been limited by platform differences, batch effects, and the difficulty to classify individual patient samples. Here, we describe a novel supervised cancer classification framework, deep cancer subtype classification (DeepCC), based on deep learning of functional spectra quantifying activities of biological pathways. In two case studies about colorectal and breast cancer classification, DeepCC classifiers and DeepCC single sample predictors both achieved overall higher sensitivity, specificity, and accuracy compared with other widely used classification methods such as random forests (RF), support vector machine (SVM), gradient boosting machine (GBM), and multinomial logistic regression algorithms. Simulation analysis based on random subsampling of genes demonstrated the robustness of DeepCC to missing data. Moreover, deep features learned by DeepCC captured biological characteristics associated with distinct molecular subtypes, enabling more compact within-subtype distribution and between-subtype separation of patient samples, and therefore greatly reduce the number of unclassifiable samples previously. In summary, DeepCC provides a novel cancer classification framework that is platform independent, robust to missing data, and can be used for single sample prediction facilitating clinical implementation of cancer molecular subtyping.
引用
收藏
页数:12
相关论文
共 52 条
[11]   Outcome signature genes in breast cancer: is there a unique set? [J].
Ein-Dor, L ;
Kela, I ;
Getz, G ;
Givol, D ;
Domany, E .
BIOINFORMATICS, 2005, 21 (02) :171-178
[12]   Cross-Platform Pathway Activity Transformation and Classification of Microarray Data [J].
Engchuan, Worrawat ;
Meechai, Asawin ;
Tongsima, Sissades ;
Chan, Jonathan H. .
COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS, 2015, 331 :139-148
[13]   Pathway activity transformation for multi-class classification of lung cancer datasets [J].
Engchuan, Worrawat ;
Chan, Jonathan H. .
NEUROCOMPUTING, 2015, 165 :81-89
[14]  
Fakoor R., 2013, Proceeding of the 30th International Conference on Machine Learning Atlanta, Georgia,USA, P3937
[15]   A multidimensional network approach reveals microRNAs as determinants of the mesenchymal colorectal cancer subtype [J].
Fessler, E. ;
Jansen, M. ;
Melo, F. De Sousa E. ;
Zhao, L. ;
Prasetyanti, P. R. ;
Rodermond, H. ;
Kandimalla, R. ;
Linnekamp, J. F. ;
Franitza, M. ;
van Hooff, S. R. ;
de Jong, J. H. ;
Oppeneer, S. C. ;
van Noesel, C. J. M. ;
Dekker, E. ;
Stassi, G. ;
Wang, X. ;
Medema, J. P. ;
Vermeulen, L. .
ONCOGENE, 2016, 35 (46) :6026-6037
[16]  
Glorot X., 2010, P 13 INT C ART INT S, V9, P249
[17]   The consensus molecular subtypes of colorectal cancer [J].
Guinney, Justin ;
Dienstmann, Rodrigo ;
Wang, Xin ;
de Reynies, Aurelien ;
Schlicker, Andreas ;
Soneson, Charlotte ;
Marisa, Laetitia ;
Roepman, Paul ;
Nyamundanda, Gift ;
Angelino, Paolo ;
Bot, Brian M. ;
Morris, Jeffrey S. ;
Simon, Iris M. ;
Gerster, Sarah ;
Fessler, Evelyn ;
Melo, Felipe De Sousa E. ;
Missiaglia, Edoardo ;
Ramay, Hena ;
Barras, David ;
Homicsko, Krisztian ;
Maru, Dipen ;
Manyam, Ganiraju C. ;
Broom, Bradley ;
Boige, Valerie ;
Perez-Villamil, Beatriz ;
Laderas, Ted ;
Salazar, Ramon ;
Gray, Joe W. ;
Hanahan, Douglas ;
Tabernero, Josep ;
Bernards, Rene ;
Friend, Stephen H. ;
Laurent-Puig, Pierre ;
Medema, Jan Paul ;
Sadanandam, Anguraj ;
Wessels, Lodewyk ;
Delorenzi, Mauro ;
Kopetz, Scott ;
Vermeulen, Louis ;
Tejpar, Sabine .
NATURE MEDICINE, 2015, 21 (11) :1350-1356
[18]   The Influence of Feature Selection Methods on Accuracy, Stability and Interpretability of Molecular Signatures [J].
Haury, Anne-Claire ;
Gestraud, Pierre ;
Vert, Jean-Philippe .
PLOS ONE, 2011, 6 (12)
[19]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[20]   Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin [J].
Hoadley, Katherine A. ;
Yau, Christina ;
Wolf, Denise M. ;
Cherniack, Andrew D. ;
Tamborero, David ;
Ng, Sam ;
Leiserson, Max D. M. ;
Niu, Beifang ;
McLellan, Michael D. ;
Uzunangelov, Vladislav ;
Zhang, Jiashan ;
Kandoth, Cyriac ;
Akbani, Rehan ;
Shen, Hui ;
Omberg, Larsson ;
Chu, Andy ;
Margolin, Adam A. ;
van't Veer, Laura J. ;
Lopez-Bigas, Nuria ;
Laird, Peter W. ;
Raphael, Benjamin J. ;
Ding, Li ;
Robertson, A. Gordon ;
Byers, Lauren A. ;
Mills, Gordon B. ;
Weinstein, John N. ;
Van Waes, Carter ;
Chen, Zhong ;
Collisson, Eric A. ;
Benz, Christopher C. ;
Perou, Charles M. ;
Stuart, Joshua M. ;
Abbott, Rachel ;
Abbott, Scott ;
Aksoy, B. Arman ;
Aldape, Kenneth ;
Ally, Adrian ;
Amin, Samirkumar ;
Anastassiou, Dimitris ;
Auman, J. Todd ;
Baggerly, Keith A. ;
Balasundaram, Miruna ;
Balu, Saianand ;
Baylin, Stephen B. ;
Benz, Stephen C. ;
Berman, Benjamin P. ;
Bernard, Brady ;
Bhatt, Ami S. ;
Birol, Inanc ;
Black, Aaron D. .
CELL, 2014, 158 (04) :929-944