DeepCC: a novel deep learning-based framework for cancer molecular subtype classification

被引:132
作者
Gao, Feng [1 ,2 ,3 ]
Wang, Wei [1 ]
Tan, Miaomiao [1 ]
Zhu, Lina [1 ]
Zhang, Yuchen [1 ]
Fessler, Evelyn [4 ]
Vermeulen, Louis [4 ]
Wang, Xin [1 ,5 ]
机构
[1] City Univ Hong Kong, Dept Biomed Sci, Hong Kong, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 6, Dept Colorectal Surg, Guangzhou, Guangdong, Peoples R China
[3] Guangdong Inst Gastroenterol, Guangdong Prov Key Lab Colorectal & Pelv Floor Di, Supported Natl Key Clin Discipline, Guangzhou, Guangdong, Peoples R China
[4] Univ Amsterdam, AMC, CEMM, Lab Expt Oncol & Radiobiol LEXOR, Amsterdam, Netherlands
[5] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China
基金
欧洲研究理事会;
关键词
II COLON-CANCER; GENE-EXPRESSION; BREAST-CANCER; VALIDATION; SIGNATURE; HETEROGENEITY; RECURRENCE; PROGNOSIS; DISCOVERY; THERAPY;
D O I
10.1038/s41389-019-0157-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Molecular subtyping of cancer is a critical step towards more individualized therapy and provides important biological insights into cancer heterogeneity. Although gene expression signature-based classification has been widely demonstrated to be an effective approach in the last decade, the widespread implementation has long been limited by platform differences, batch effects, and the difficulty to classify individual patient samples. Here, we describe a novel supervised cancer classification framework, deep cancer subtype classification (DeepCC), based on deep learning of functional spectra quantifying activities of biological pathways. In two case studies about colorectal and breast cancer classification, DeepCC classifiers and DeepCC single sample predictors both achieved overall higher sensitivity, specificity, and accuracy compared with other widely used classification methods such as random forests (RF), support vector machine (SVM), gradient boosting machine (GBM), and multinomial logistic regression algorithms. Simulation analysis based on random subsampling of genes demonstrated the robustness of DeepCC to missing data. Moreover, deep features learned by DeepCC captured biological characteristics associated with distinct molecular subtypes, enabling more compact within-subtype distribution and between-subtype separation of patient samples, and therefore greatly reduce the number of unclassifiable samples previously. In summary, DeepCC provides a novel cancer classification framework that is platform independent, robust to missing data, and can be used for single sample prediction facilitating clinical implementation of cancer molecular subtyping.
引用
收藏
页数:12
相关论文
共 52 条
[1]   ColoGuideEx: a robust gene classifier specific for stage II colorectal cancer prognosis [J].
Agesen, Trude H. ;
Sveen, Anita ;
Merok, Marianne A. ;
Lind, Guro E. ;
Nesbakken, Arild ;
Skotheim, Rolf I. ;
Lothe, Ragnhild A. .
GUT, 2012, 61 (11) :1560-1567
[2]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[3]   Adjuvant chemotherapy and relative survival of patients with stage II colon cancer - A EURECCA international comparison between the Netherlands, Denmark, Sweden, England, Ireland, Belgium, and Lithuania [J].
Breugom, A. J. ;
Bastiaannet, E. ;
Boelens, P. G. ;
Iversen, L. H. ;
Martling, A. ;
Johansson, R. ;
Evans, T. ;
Lawton, S. ;
O'Brien, K. M. ;
Van Eycken, E. ;
Janciauskiene, R. ;
Liefers, G. J. ;
Cervantes, A. ;
Lemmens, V. E. P. P. ;
van de Velde, C. J. H. .
EUROPEAN JOURNAL OF CANCER, 2016, 63 :110-117
[4]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[5]   Gene expression inference with deep learning [J].
Chen, Yifei ;
Li, Yi ;
Narayan, Rajiv ;
Subramanian, Aravind ;
Xie, Xiaohui .
BIOINFORMATICS, 2016, 32 (12) :1832-1839
[6]   A 50-Gene Intrinsic Subtype Classifier for Prognosis and Prediction of Benefit from Adjuvant Tamoxifen [J].
Chia, Stephen K. ;
Bramwell, Vivien H. ;
Tu, Dongsheng ;
Shepherd, Lois E. ;
Jiang, Shan ;
Vickery, Tammi ;
Mardis, Elaine ;
Leung, Samuel ;
Ung, Karen ;
Pritchard, Kathleen I. ;
Parker, Joel S. ;
Bernard, Philip S. ;
Perou, Charles M. ;
Ellis, Matthew J. ;
Nielsen, Torsten O. .
CLINICAL CANCER RESEARCH, 2012, 18 (16) :4465-4472
[7]   Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions [J].
De Sousa E Melo, Felipe ;
Wang, Xin ;
Jansen, Marnix ;
Fessler, Evelyn ;
Trinh, Anne ;
de Rooij, Laura P. M. H. ;
de Jong, Joan H. ;
de Boer, Onno J. ;
van Leersum, Ronald ;
Bijlsma, Maarten F. ;
Rodermond, Hans ;
van der Heijden, Maartje ;
van Noesel, Carel J. M. ;
Tuynman, Jurriaan B. ;
Dekker, Evelien ;
Markowetz, Florian ;
Medema, Jan Paul ;
Vermeulen, Louis .
NATURE MEDICINE, 2013, 19 (05) :614-618
[8]   Impact of missing data imputation methods on gene expression clustering and classification [J].
de Souto, Marcilio C. P. ;
Jaskowiak, Pablo A. ;
Costa, Ivan G. .
BMC BIOINFORMATICS, 2015, 16
[9]   Challenges in the Management of Stage II Colon Cancer [J].
Dotan, Efrat ;
Cohen, Steven J. .
SEMINARS IN ONCOLOGY, 2011, 38 (04) :511-520
[10]   Do Two Machine-Learning Based Prognostic Signatures for Breast Cancer Capture the Same Biological Processes? [J].
Drier, Yotam ;
Domany, Eytan .
PLOS ONE, 2011, 6 (03)