Modeling the fractal development of modular robots

被引:5
作者
Bie, Dongyang [1 ]
Liu, Gangfeng [1 ]
Zhang, Yu [1 ]
Zhao, Jie [1 ]
Zhu, Yanhe [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, C1-203,HIT Sci Pk,2 Yikuang St, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Modular robot; multibody systems; distributed dynamics; self-reconfiguration; L-systems; fractal analysis; RECONFIGURATION; ALGORITHMS; SELECTION; SYSTEMS; DESIGN; SHAPE;
D O I
10.1177/1687814017695692
中图分类号
O414.1 [热力学];
学科分类号
摘要
Modeling and controlling self-reconfiguration of modular robots is still a challenging problem in the field of distributed control. The two main constrains are the design of target shapes and the absence of global state for decentralized modules. We present a new way for those two problems inspired from the developmental process of plant growth. As a mathematical theory of plant development, L-systems capture the essence of growth process. We extend L-systems to the self-reconfiguration process of modules robots. Target configurations will be described in a string of symbols, and robotic structures capture fractal characters through the rewriting function. Extended graphical interpretation of L-system symbols can generate module-level predictions about robotic global states. Simulations of different self-reconfiguration processes illustrate the proposed method.
引用
收藏
页数:9
相关论文
共 36 条
  • [1] Abelson H., 1986, Turtle geometry: The computer as a medium for exploring mathematics, DOI [10.7551/mitpress/6933.001.00, 10.7551/mitpress/6933.001.0001]
  • [2] Modular robotic systems: Methods and algorithms for abstraction, planning, control, and synchronization
    Ahmadzadeh, Hossein
    Masehian, Ellips
    [J]. ARTIFICIAL INTELLIGENCE, 2015, 223 : 27 - 64
  • [3] Baish JW, 2000, CANCER RES, V60, P3683
  • [4] Defining and simulating open-ended novelty: requirements, guidelines, and challenges
    Banzhaf, Wolfgang
    Baumgaertner, Bert
    Beslon, Guillaume
    Doursat, Rene
    Foster, James A.
    McMullin, Barry
    de Melo, Vinicius Veloso
    Miconi, Thomas
    Spector, Lee
    Stepney, Susan
    White, Roger
    [J]. THEORY IN BIOSCIENCES, 2016, 135 (03) : 131 - 161
  • [5] Multiagent control of self-reconfigurable robots
    Bojinov, F
    Casal, A
    Hogg, T
    [J]. ARTIFICIAL INTELLIGENCE, 2002, 142 (02) : 99 - 120
  • [6] Evolution of shape-changing and self-repairing control for the ATRON self-reconfigurable robot
    Christensen, David Johan
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 2539 - 2545
  • [7] Fractal design concepts for stretchable electronics
    Fan, Jonathan A.
    Yeo, Woon-Hong
    Su, Yewang
    Hattori, Yoshiaki
    Lee, Woosik
    Jung, Sung-Young
    Zhang, Yihui
    Liu, Zhuangjian
    Cheng, Huanyu
    Falgout, Leo
    Bajema, Mike
    Coleman, Todd
    Gregoire, Dan
    Larsen, Ryan J.
    Huang, Yonggang
    Rogers, John A.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [8] Fitch R, 2003, IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, P2460
  • [9] Million module march: Scalable locomotion for large self-reconfiguring robots
    Fitch, Robert
    Butler, Zack
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2008, 27 (3-4) : 331 - 343
  • [10] Frijters D., 1974, LECT NOTES COMPUTER, V15, P24