STEADY-STATE SOLUTIONS FOR GIERER-MEINHARDT TYPE SYSTEMS WITH DIRICHLET BOUNDARY CONDITION

被引:28
作者
Ghergu, Marius [1 ]
机构
[1] Romanian Acad, Inst Math Simion Stoilow, RO-014700 Bucharest, Romania
关键词
Gierer-Meinhardt system; singular nonlinearities; asymptotic behavior; ACTIVATOR-INHIBITOR SYSTEM; SEMILINEAR NEUMANN PROBLEM; LEAST-ENERGY SOLUTIONS; ELLIPTIC-EQUATIONS; PATTERN FORMATION; EXISTENCE; CONVECTION;
D O I
10.1090/S0002-9947-09-04670-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the following Gierer-Meinhardt type systems subject to Dirichlet boundary conditions: {Delta u - alpha u + u(p)/v(q) + rho(x) = 0, u > 0, in Omega, Delta v - beta v + u(r)/v(s) = 0, v > 0, in Omega, u = 0, v = 0 on partial derivative Omega, where Omega subset of R-N (N >= 1) is a smooth bounded domain, rho(x) >= 0 in Omega and alpha, beta >= 0. We are mainly interested in the case of different source terms, that is, (p, q) not equal (r, s). Under appropriate conditions on the exponents p, q, r and s we establish various results of existence, regularity and boundary behavior. In the one dimensional case a uniqueness result is also presented.
引用
收藏
页码:3953 / 3976
页数:24
相关论文
共 28 条
[1]  
[Anonymous], ATTI ACCAD NAZ LINCE
[2]  
[Anonymous], 1998, Not. Am. Math. Soc.
[3]   A singular Gierer-Meinhardt system of elliptic equations [J].
Choi, YS ;
McKenna, PJ .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (04) :503-522
[4]   A singular Gierer-Meinhardt system of elliptic equations: the classical case [J].
Choi, YS ;
McKenna, PJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (05) :521-541
[5]   Lane-Emden-Fowler equations with convection and singular potential [J].
Dupaigne, Louis ;
Ghergu, Marius ;
Radulescu, Vicentiu .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (06) :563-581
[6]   On a class of sublinear singular elliptic problems with convection term [J].
Ghergu, M ;
Radulescu, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (02) :635-646
[7]  
Ghergu M., 2008, Singular elliptic problems: bifurcation and asymptotic analysis, Oxford lecture series in mathematics and its applications, V37
[8]   On a class of singular Gierer-Meinhardt systems arising in morphogenesis [J].
Ghergu, Marius ;
Radulescu, Vicentiu .
COMPTES RENDUS MATHEMATIQUE, 2007, 344 (03) :163-168
[9]   A singular Gierer-Meinhardt system with different source terms [J].
Ghergu, Marius ;
Radulescu, Vicentiu .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2008, 138 :1215-1234
[10]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39