Range projections and the Moore-Penrose inverse in rings with involution

被引:19
作者
Koliha, J. J. [1 ]
Rakocevic, V.
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Nis, Fac Sci & Math, Nis 18000, Serbia
关键词
C*-algebra; Moore-Penrose inverse; range projection; idempotent;
D O I
10.1080/03081080500472954
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study the existence of range projections in rings with involution, relating it to the existence of the Moore - Penrose inverse. The results are applied to the solution of the equation xbx = x in rings with involution, extending the results of Greville for matrices. Simpler new proofs are given of the Moore - Penrose invertibility of regular elements in rings with involution, and of the Ljance's formula.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 9 条
[1]  
[Anonymous], TEORET PRIK MAT
[2]   SOLUTIONS OF MATRIX EQUATION XAX=X, AND RELATIONS BETWEEN OBLIQUE AND ORTHOGONAL PROJECTORS [J].
GREVILLE, TN .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1974, 26 (04) :828-832
[3]   ON GENERALIZED INVERSES IN C-ASTERISK-ALGEBRAS [J].
HARTE, R ;
MBEKHTA, M .
STUDIA MATHEMATICA, 1992, 103 (01) :71-77
[4]   GENERALIZED INVERSES IN C(ASTERISK)-ALGEBRAS .2. [J].
HARTE, R ;
MBEKHTA, M .
STUDIA MATHEMATICA, 1993, 106 (02) :129-138
[5]   On the norm of idempotents in C*-algebras [J].
Koliha, JJ ;
Rakocevic, V .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (02) :685-697
[6]   Invertibility of the difference of idempotents [J].
Koliha, JJ ;
Rakocevic, V .
LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (01) :97-110
[7]  
KOLIHA JJ, 2001, DEMONSTR MATH, V34, P91
[8]  
Penrose R., 1955, P CAMBRIDGE PHILOS S, V51, P406, DOI [10.1017/S0305004100030401, DOI 10.1017/S0305004100030401]
[9]   On the norm of idempotent operators in a Hilbert space [J].
Rakocevic, V .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (08) :748-750