Bistability of patterns of synchrony in Kuramoto oscillators with inertia

被引:46
|
作者
Belykh, Igor V. [1 ,2 ]
Brister, Barrett N. [1 ,2 ]
Belykh, Vladimir N. [3 ,4 ]
机构
[1] Georgia State Univ, Dept Math & Stat, 30 Pryor St, Atlanta, GA 30303 USA
[2] Georgia State Univ, Neurosci Inst, 30 Pryor St, Atlanta, GA 30303 USA
[3] Lobachevsky State Univ Nizhny Novgorod, Dept Control Theory, 23 Gagarin Ave, Nizhnii Novgorod 603950, Russia
[4] Volga State Univ Water Transport, Dept Math, 5A,Nesterov Str, Nizhnii Novgorod 603950, Russia
基金
俄罗斯科学基金会; 美国国家科学基金会;
关键词
NETWORKS; MODEL; STABILITY; DYNAMICS; INCOHERENCE; COHERENCE; LATTICE;
D O I
10.1063/1.4961435
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the co-existence of stable patterns of synchrony in two coupled populations of identical Kuramoto oscillators with inertia. The two populations have different sizes and can split into two clusters where the oscillators synchronize within a cluster while there is a phase shift between the dynamics of the two clusters. Due to the presence of inertia, which increases the dimensionality of the oscillator dynamics, this phase shift can oscillate, inducing a breathing cluster pattern. We derive analytical conditions for the co-existence of stable two-cluster patterns with constant and oscillating phase shifts. We demonstrate that the dynamics, that governs the bistability of the phase shifts, is described by a driven pendulum equation. We also discuss the implications of our stability results to the stability of chimeras. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Averaging and Cluster Synchronization of Kuramoto Oscillators
    Kato, Rui
    Ishii, Hideaki
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1497 - 1502
  • [42] Synchronization of Kuramoto oscillators in dense networks
    Lu, Jianfeng
    Steinerberger, Stefan
    NONLINEARITY, 2020, 33 (11) : 5905 - 5918
  • [43] Statistics of synchronization times in Kuramoto oscillators
    Sinha, Abhisek
    Ghosh, Anandamohan
    EPL, 2023, 141 (05)
  • [44] Linearization error in synchronization of Kuramoto oscillators
    Ghorban, Samira Hossein
    Baharifard, Fatemeh
    Hesaam, Bardyaa
    Zarei, Mina
    Sarbazi-Azad, Hamid
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 411
  • [45] Gluing Kuramoto coupled oscillators networks
    Canale, Eduardo
    Monzon, Pablo
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 2301 - +
  • [46] ALGEBRAIC ASPECTS OF HOMOGENEOUS KURAMOTO OSCILLATORS
    Harrington, Heather a.
    Schenck, Hal
    Stillman, Mike
    MATHEMATICS OF COMPUTATION, 2025,
  • [47] PACEMAKERS IN A CAYLEY TREE OF KURAMOTO OSCILLATORS
    Gleiser, Pablo M.
    Prignano, Luce
    Perez-Vicente, Conrad J.
    Diaz-Guilera, Albert
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (07):
  • [48] Remarks on the complete synchronization of Kuramoto oscillators
    Ha, Seung-Yeal
    Kim, Hwa Kil
    Park, Jinyeong
    NONLINEARITY, 2015, 28 (05) : 1441 - 1462
  • [49] On the Critical Coupling Strength for Kuramoto Oscillators
    Doerfler, Florian
    Bullo, Francesco
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3239 - 3244
  • [50] Synchronization of Kuramoto Oscillators with Adaptive Couplings
    Ha, Seung-Yeal
    Noh, Se Eun
    Park, Jinyeong
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 162 - 194