Adhesion-based cell sorter with antibody-coated amino-functionalized-parylene surface

被引:26
作者
Miwa, Junichi [1 ]
Suzuki, Yuji [1 ]
Kasagi, Nobuhide [1 ]
机构
[1] Univ Tokyo, Dept Mech Engn, Tokyo 1138656, Japan
关键词
antigen-antibody interaction; cell separation; functionalized parylene; regenerative medicine;
D O I
10.1109/JMEMS.2008.921706
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An adhesion-based cell-separation device is developed for the extraction of rare cells from a cell mixture. The cell-separation principle mimics leukocyte recruitment from blood vessels in our body, where leukocytes are decelerated by antigen-antibody interaction at the sites of inflammation or injury. Separation of cell mixture can be accomplished by simply introducing the sample plug through an antibody-immobilized microchannel without any pre- or postprocessing. A new class of amino-functionalized parylene (diX AM) is employed in order to provide amino group on the channel-wall surface. The amount of immobilized biomolecules on diX AM surface is characterized through quartz-crystal-microbalance measurements. The number density of immobilized biotin is as large as 10(19) m(-2), which indicates an amount of amino group enough to immobilize biotin and other biomolecules in a closely packed state. It is shown by the measurement of cell velocity in the CD31-coated diX AM microchannel that the flowing velocity of human endothelial cells are reduced by up to 70% due to specific adhesion of CD31 antigens and antibodies. The results are further analyzed by using a 2-D membrane-peeling model, with which the cell velocity can be estimated under different conditions of antibody number density and bulk mean velocity. Based on the experimental results, a cell-separation device for treating a 1-mu L cell-mixture plug is designed and microfabricated. A mixture of human endothelial cells and leukocytes is successfully separated into plugs of each cell type within a shorter period of time as compared to conventional cell-separation methods which require sample preprocessing.
引用
收藏
页码:611 / 622
页数:12
相关论文
共 47 条
[1]   Biomolecular immobilization on conducting polymers for biosensing applications [J].
Ahuja, Tarushee ;
Mir, Irfan Ahmad ;
Kumar, Devendra ;
Rajesh .
BIOMATERIALS, 2007, 28 (05) :791-805
[2]   RELATIONSHIP BETWEEN VELOCITY OF ROLLING GRANULOCYTES AND THAT OF BLOOD-FLOW IN VENULES [J].
ATHERTON, A ;
BORN, GVR .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 233 (01) :157-165
[3]   A parylene lift-off process with microfluidic channels for selective protein patterning [J].
Atsuta, Kyoko ;
Suzuki, Hiroaki ;
Takeuchi, Shoji .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (03) :496-500
[4]   Bio-microarray fabrication techniques - A review [J].
Barbulovic-Nad, Irena ;
Lucente, Michael ;
Sun, Yu ;
Zhang, Mingjun ;
Wheeler, Aaron R. ;
Bussmann, Markus .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2006, 26 (04) :237-259
[5]   CELL-ADHESION - COMPETITION BETWEEN NONSPECIFIC REPULSION AND SPECIFIC BONDING [J].
BELL, GI ;
DEMBO, M ;
BONGRAND, P .
BIOPHYSICAL JOURNAL, 1984, 45 (06) :1051-1064
[6]  
Berger M, 2001, ELECTROPHORESIS, V22, P3883, DOI 10.1002/1522-2683(200110)22:18<3883::AID-ELPS3883>3.0.CO
[7]  
2-4
[8]   Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood [J].
Bieback, K ;
Kern, S ;
Klüter, H ;
Eichler, H .
STEM CELLS, 2004, 22 (04) :625-634
[9]   FLUORESCENCE ACTIVATED CELL SORTING [J].
BONNER, WA ;
SWEET, RG ;
HULETT, HR ;
HERZENBERG, LA .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1972, 43 (03) :404-+
[10]   Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel [J].
Chang, WC ;
Lee, LP ;
Liepmann, D .
LAB ON A CHIP, 2005, 5 (01) :64-73