A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, p450 102, and P450 108

被引:83
作者
deGroot, MJ
Vermeulen, NPE
Kramer, JD
vanAcker, FAA
denKelder, GMDO
机构
[1] VRIJE UNIV AMSTERDAM, LEIDEN AMSTERDAM CTR DRUG RES, DIV MOL TOXICOL, DEPT PHARMACOCHEM, NL-1081 HV AMSTERDAM, NETHERLANDS
[2] VRIJE UNIV AMSTERDAM, LEIDEN AMSTERDAM CTR DRUG RES, DIV MED CHEM, DEPT PHARMACOCHEM, NL-1081 HV AMSTERDAM, NETHERLANDS
关键词
D O I
10.1021/tx960003i
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Cytochromes P450 (P450s) constitute a superfamily of phase I enzymes capable of oxidizing and reducing various substrates. P450 2D6 is a polymorphic enzyme, which is absent in 5-9% of the Caucasian population as a result of a recessive inheritance of gene mutations. This deficiency leads to impaired metabolism of a variety of drugs. All drugs metabolized by P450 2D6 contain a basic nitrogen atom, and a flat hydrophobic region coplanar to the oxidation site which is either 5 or 7 Angstrom away from the basic nitrogen atom. The aim of this study was to build a three-dimensional structure for the protein and more specifically for the active site of P450 2D6 in order to determine the amino acid residues possibly responsible for binding and/or catalytic activity. Furthermore, the structural features of the active site can be implemented into the existing small molecule substrate model, thus enhancing its predictive value with respect to possible metabolism by P450 2D6. As no crystal structures are yet available for membrane-bound P450s (such as P450 2D6), the crystal structures of bacterial (soluble) P450 101 (P450(cam)), P450 102 (P450(BM3)), and P450 108 (P450(terp)) have been used to build a three-dimensional model for P450 2D6 with molecular modeling techniques. Several important P450 2D6 substrates were consecutively docked into the active site of the protein model. The energy optimized positions of the substrates in the protein agreed well with the original relative positions of the substrates within the substrate model. This confirms the usefulness of small molecule models in the absence of structural protein data. Furthermore, the derived protein model indicates new leads for experimental validation and extension of the substrate model.
引用
收藏
页码:1079 / 1091
页数:13
相关论文
共 94 条
[61]  
Luo Zongshu, 1994, Archives of Biochemistry and Biophysics, V309, P52
[62]   POLYMORPHIC HYDROXYLATION OF DEBRISOQUINE IN MAN [J].
MAHGOUB, A ;
IDLE, JR ;
DRING, LG ;
LANCASTER, R ;
SMITH, RL .
LANCET, 1977, 2 (8038) :584-586
[63]   THE CYP2D GENE SUBFAMILY - ANALYSIS OF THE MOLECULAR-BASIS OF THE DEBRISOQUINE 4-HYDROXYLASE DEFICIENCY IN DA RATS [J].
MATSUNAGA, E ;
ZANGER, UM ;
HARDWICK, JP ;
GELBOIN, HV ;
MEYER, UA ;
GONZALEZ, FJ .
BIOCHEMISTRY, 1989, 28 (18) :7349-7355
[64]  
MATSUNAGA E, 1990, J BIOL CHEM, V265, P17197
[65]  
MAUTZ DS, 1995, DRUG METAB DISPOS, V23, P513
[66]   THE MOLECULAR MECHANISMS OF 2 COMMON POLYMORPHISMS OF DRUG OXIDATION - EVIDENCE FOR FUNCTIONAL-CHANGES IN CYTOCHROME-P-450 ISOZYMES CATALYZING BUFURALOL AND MEPHENYTOIN OXIDATION [J].
MEYER, UA ;
GUT, J ;
KRONBACH, T ;
SKODA, C ;
MEIER, UT ;
CATIN, T ;
DAYER, P .
XENOBIOTICA, 1986, 16 (05) :449-464
[67]   RESONANCE RAMAN CHARACTERIZATION OF IRON(III) PORPHYRIN N-OXIDE - EVIDENCE FOR AN FE-O-N BRIDGED STRUCTURE [J].
MIZUTANI, Y ;
WATANABE, Y ;
KITAGAWA, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (08) :3439-3441
[68]   CRYSTALLIZATION AND PRELIMINARY-X-RAY DIFFRACTION STUDIES OF NITRIC-OXIDE REDUCTASE CYTOCHROME P450NOR FROM FUSARIUM-OXYSPORUM [J].
NAKAHARA, K ;
SHOUN, H ;
ADACHI, S ;
IIZUKA, T ;
SHIRO, Y .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 239 (01) :158-159
[69]   THE P450 SUPERFAMILY - UPDATE ON NEW SEQUENCES, GENE-MAPPING, ACCESSION NUMBERS, EARLY TRIVIAL NAMES OF ENZYMES, AND NOMENCLATURE [J].
NELSON, DR ;
KAMATAKI, T ;
WAXMAN, DJ ;
GUENGERICH, FP ;
ESTABROOK, RW ;
FEYEREISEN, R ;
GONZALEZ, FJ ;
COON, MJ ;
GUNSALUS, IC ;
GOTOH, O ;
OKUDA, K ;
NEBERT, DW .
DNA AND CELL BIOLOGY, 1993, 12 (01) :1-51
[70]  
NELSON DR, 1988, J BIOL CHEM, V263, P6038