Facile synthesis of CoX (X = S, P) as an efficient electrocatalyst for hydrogen evolution reaction

被引:68
作者
Li, Jiayuan [1 ]
Zhou, Xuemei [1 ]
Xia, Zhaoming [1 ]
Zhang, Zhiyun [1 ]
Li, Jing [1 ]
Ma, Yuanyuan [1 ,2 ]
Qu, Yongquan [1 ,2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Ctr Appl Chem Res, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Xian 710049, Peoples R China
关键词
ACTIVE EDGE SITES; NICKEL PHOSPHIDE; H-2; PRODUCTION; MOS2; MOLYBDENUM; CATALYST; NANOPARTICLES; SURFACE; WATER; GENERATION;
D O I
10.1039/c5ta03153b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing environmentally-friendly and earth-abundant electrocatalysts is desirable for an efficient hydrogen evolution reaction (HER). Herein, we report a facile and controllable synthesis of CoX (X = S, P) nanocatalysts by the chemical conversion of thin Co(OH)(2) nanoplates under mild conditions. Both catalysts delivered high catalytic activity for HER. Small onset potentials of 59 and 32 mV, along with low Tafel slopes of 56.2 and 54.8 mV dec(-1), were observed for CoS and CoP, respectively. Analyses suggest that the better HER performance of CoP nanocatalysts could be attributed to the intrinsically more positively charged nature of the Co metal center, the longer Co-P bond length, and more catalytic active sites due to the smaller size of the CoP nanocatalysts. High catalytic stability in acidic media was also observed for both CoS and CoP catalysts for a duration of 18 hours.
引用
收藏
页码:13066 / 13071
页数:6
相关论文
共 53 条
[1]   ARTIFICIAL PHOTOSYNTHESIS - SOLAR SPLITTING OF WATER TO HYDROGEN AND OXYGEN [J].
BARD, AJ ;
FOX, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (03) :141-145
[2]   Understanding the relationship between composition and hydrodesulfurization properties for cobalt phosphide catalysts [J].
Burns, Autumn W. ;
Layman, Kathryn A. ;
Bale, Denise H. ;
Bussell, Mark E. .
APPLIED CATALYSIS A-GENERAL, 2008, 343 (1-2) :68-76
[3]   Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets [J].
Chen, Wei-Fu ;
Sasaki, Kotaro ;
Ma, Chao ;
Frenkel, Anatoly I. ;
Marinkovic, Nebojsa ;
Muckerman, James T. ;
Zhu, Yimei ;
Adzic, Radoslav R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (25) :6131-6135
[4]   Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials [J].
Chen, Zhebo ;
Cummins, Dustin ;
Reinecke, Benjamin N. ;
Clark, Ezra ;
Sunkara, Mahendra K. ;
Jaramillo, Thomas F. .
NANO LETTERS, 2011, 11 (10) :4168-4175
[5]   Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H [J].
Conway, BE ;
Tilak, BV .
ELECTROCHIMICA ACTA, 2002, 47 (22-23) :3571-3594
[6]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[7]   High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro- and Nanostructures [J].
Faber, Matthew S. ;
Dziedzic, Rafal ;
Lukowski, Mark A. ;
Kaiser, Nicholas S. ;
Ding, Qi ;
Jin, Song .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (28) :10053-10061
[8]   Examination of the bonding in binary transiton-metal monophosphides MP (M = Cr, Mn, Fe, Co) by x-ray photoelectron spectroscopy [J].
Grosvenor, AP ;
Wik, SD ;
Cavell, RG ;
Mar, A .
INORGANIC CHEMISTRY, 2005, 44 (24) :8988-8998
[9]   [FeFe]-Hydrogenase-Catalyzed H2 production in a photoelectrochemical biofuel cell [J].
Hambourger, Michael ;
Gervaldo, Miguel ;
Svedruzic, Drazenka ;
King, Paul W. ;
Gust, Devens ;
Ghirardi, Maria ;
Moore, Ana L. ;
Moore, Thomas A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (06) :2015-2022
[10]   Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution [J].
Hinnemann, B ;
Moses, PG ;
Bonde, J ;
Jorgensen, KP ;
Nielsen, JH ;
Horch, S ;
Chorkendorff, I ;
Norskov, JK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5308-5309